忙于图像处理和DCNN,很长时间不使用ROS,重新安装系统后,再次使用ORB-SLAM2(ROS)进行三维重建和实时追踪的演示。

参考以前的文章:ROS:ubuntu-Ros使用OrbSLAM

ORB-SLAM2(ROS)的GitHub链接:

raulmur的主页:https://github.com/raulmur/

ORB-SLAM2使用了RGB_D相机,可以在Kinect收集得到的数据集上进行演示。

转述一下ORB-SLAM2的教程

一.ORB-SLAM2 安装

Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2)

13 Jan 2017: OpenCV 3 and Eigen 3.3 are now supported.

22 Dec 2016: Added AR demo (see section 7).

ORB-SLAM2 is a real-time SLAM library for Monocular,
Stereo
and RGB-D cameras that computes the camera trajectory and a sparse 3D reconstruction (in the stereo and RGB-D case with true scale). It is able to detect loops and relocalize the camera in real time. We provide examples to run
the SLAM system in the KITTI dataset as stereo or monocular, in the TUM dataset as RGB-D or monocular, and in the EuRoC dataset as stereo or monocular. We also provide a ROS node to process live monocular, stereo or RGB-D streams.The library can be compiled without ROS. ORB-SLAM2 provides a GUI to change between aSLAM Mode andLocalization
Mode
, see section 9 of this document.

###Related Publications:

[Monocular] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System.IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015. (2015 IEEE Transactions on Robotics
Best Paper Award
).PDF.

[Stereo and RGB-D] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras.ArXiv preprint arXiv:1610.06475PDF.

[DBoW2 Place Recognizer] Dorian Gálvez-López and Juan D. Tardós. Bags of Binary Words for Fast Place Recognition in Image Sequences.IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188-1197, 2012.PDF

#1. License

ORB-SLAM2 is released under a GPLv3 license. For a list of all code/library dependencies (and associated licenses), please seeDependencies.md.

For a closed-source version of ORB-SLAM2 for commercial purposes, please contact the authors: orbslam (at) unizar (dot) es.

If you use ORB-SLAM2 (Monocular) in an academic work, please cite:

@article{murTRO2015,
title={{ORB-SLAM}: a Versatile and Accurate Monocular {SLAM} System},
author={Mur-Artal, Ra\'ul, Montiel, J. M. M. and Tard\'os, Juan D.},
journal={IEEE Transactions on Robotics},
volume={31},
number={5},
pages={1147--1163},
doi = {10.1109/TRO.2015.2463671},
year={2015}
}

if you use ORB-SLAM2 (Stereo or RGB-D) in an academic work, please cite:

@article{murORB2,
title={{ORB-SLAM2}: an Open-Source {SLAM} System for Monocular, Stereo and {RGB-D} Cameras},
author={Mur-Artal, Ra\'ul and Tard\'os, Juan D.},
journal={arXiv preprint arXiv:1610.06475},
year={2016}
}

#2. PrerequisitesWe have tested the library in Ubuntu 12.04,
14.04
and 16.04, but it should be easy to compile in other platforms. A powerful computer (e.g. i7) will ensure real-time performance and provide more stable and accurate results.

C++11 or C++0x Compiler

We use the new thread and chrono functionalities of C++11.

Pangolin

We use Pangolin for visualization and user interface. Dowload and install instructions can be found at:https://github.com/stevenlovegrove/Pangolin.

OpenCV

We use OpenCV to manipulate images and features. Dowload and install instructions can be found at:http://opencv.org.Required
at leat 2.4.3. Tested with OpenCV 2.4.11 and OpenCV 3.2
.

Eigen3

Required by g2o (see below). Download and install instructions can be found at:http://eigen.tuxfamily.org.Required at least 3.1.0.

DBoW2 and g2o (Included in Thirdparty folder)

We use modified versions of the DBoW2 library to perform place recognition and g2o library to perform non-linear optimizations. Both modified libraries (which are BSD) are included in theThirdparty folder.

ROS (optional)

We provide some examples to process the live input of a monocular, stereo or RGB-D camera usingROS. Building these examples is optional. In case you want
to use ROS, a version Hydro or newer is needed.

#3. Building ORB-SLAM2 library and TUM/KITTI examples

Clone the repository:

git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2

We provide a script build.sh to build the Thirdparty libraries andORB-SLAM2. Please make sure you have installed all required dependencies (see section 2). Execute:

cd ORB_SLAM2
chmod +x build.sh
./build.sh

注意事项:安装附加依赖库...

出错及解决方法

./build.sh

过程的最后

sudo make -j

出现 usleep 未定义问题

解决方法:

找到所有包含这个函数的源代码

在 头部添加:

#include <unistd.h>

则可以编译成功Q!

This will create libORB_SLAM2.so at lib folder and the executablesmono_tum,mono_kitti,rgbd_tum,stereo_kitti,mono_euroc andstereo_euroc
inExamples folder.

#4. Monocular Examples

二.例程和数据集

TUM Dataset

  1. Download a sequence from http://vision.in.tum.de/data/datasets/rgbd-dataset/download and uncompress it.

  2. Execute the following command. Change TUMX.yaml to TUM1.yaml,TUM2.yaml or TUM3.yaml for freiburg1, freiburg2 and freiburg3 sequences respectively. ChangePATH_TO_SEQUENCE_FOLDERto the uncompressed sequence folder.

./Examples/Monocular/mono_tum Vocabulary/ORBvoc.txt Examples/Monocular/TUMX.yaml PATH_TO_SEQUENCE_FOLDER

注释:慕尼黑工业大学 TUM数据集给出了相应的软件工具集:http://vision.in.tum.de/data/software

数据集(3D场景)下载地址:http://vision.in.tum.de/data/datasets/omni-lsdslam#dataset

KITTI Dataset

  1. Download the dataset (grayscale images) from http://www.cvlibs.net/datasets/kitti/eval_odometry.php

  2. Execute the following command. Change KITTIX.yamlby KITTI00-02.yaml, KITTI03.yaml or KITTI04-12.yaml for sequence 0 to 2, 3, and 4 to 12 respectively. ChangePATH_TO_DATASET_FOLDER to the uncompressed dataset folder. ChangeSEQUENCE_NUMBER
    to 00, 01, 02,.., 11.

./Examples/Monocular/mono_kitti Vocabulary/ORBvoc.txt Examples/Monocular/KITTIX.yaml PATH_TO_DATASET_FOLDER/dataset/sequences/SEQUENCE_NUMBER

里程数据集:大型户外数据集合

EuRoC Dataset

  1. Download a sequence (ASL format) from http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

  2. Execute the following first command for V1 and V2 sequences, or the second command for MH sequences. Change PATH_TO_SEQUENCE_FOLDER and SEQUENCE according to the sequence you want to run.

./Examples/Monocular/mono_euroc Vocabulary/ORBvoc.txt Examples/Monocular/EuRoC.yaml PATH_TO_SEQUENCE_FOLDER/mav0/cam0/data Examples/Monocular/EuRoC_TimeStamps/SEQUENCE.txt
./Examples/Monocular/mono_euroc Vocabulary/ORBvoc.txt Examples/Monocular/EuRoC.yaml PATH_TO_SEQUENCE/cam0/data Examples/Monocular/EuRoC_TimeStamps/SEQUENCE.txt

#5. Stereo Examples

Micro Aerial Vehicle :用于室内无人机进行场景建模的数据集合

KITTI Dataset

  1. Download the dataset (grayscale images) from http://www.cvlibs.net/datasets/kitti/eval_odometry.php

  2. Execute the following command. Change KITTIX.yamlto KITTI00-02.yaml, KITTI03.yaml or KITTI04-12.yaml for sequence 0 to 2, 3, and 4 to 12 respectively. ChangePATH_TO_DATASET_FOLDER to the uncompressed dataset folder. ChangeSEQUENCE_NUMBER
    to 00, 01, 02,.., 11.

./Examples/Stereo/stereo_kitti Vocabulary/ORBvoc.txt Examples/Stereo/KITTIX.yaml PATH_TO_DATASET_FOLDER/dataset/sequences/SEQUENCE_NUMBER

EuRoC Dataset

  1. Download a sequence (ASL format) from http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets

  2. Execute the following first command for V1 and V2 sequences, or the second command for MH sequences. Change PATH_TO_SEQUENCE_FOLDER and SEQUENCE according to the sequence you want to run.

./Examples/Stereo/stereo_euroc Vocabulary/ORBvoc.txt Examples/Stereo/EuRoC.yaml PATH_TO_SEQUENCE/mav0/cam0/data PATH_TO_SEQUENCE/mav0/cam1/data Examples/Stereo/EuRoC_TimeStamps/SEQUENCE.txt
./Examples/Stereo/stereo_euroc Vocabulary/ORBvoc.txt Examples/Stereo/EuRoC.yaml PATH_TO_SEQUENCE/cam0/data PATH_TO_SEQUENCE/cam1/data Examples/Stereo/EuRoC_TimeStamps/SEQUENCE.txt

#6. RGB-D Example

TUM Dataset

  1. Download a sequence from http://vision.in.tum.de/data/datasets/rgbd-dataset/download and uncompress it.

  2. Associate RGB images and depth images using the python script associate.py. We already provide associations for some of the sequences in
    Examples/RGB-D/associations/
    . You can generate your own associations file executing:

python associate.py PATH_TO_SEQUENCE/rgb.txt PATH_TO_SEQUENCE/depth.txt > associations.txt
  1. Execute the following command. Change TUMX.yaml to TUM1.yaml,TUM2.yaml or TUM3.yaml for freiburg1, freiburg2 and freiburg3 sequences respectively. ChangePATH_TO_SEQUENCE_FOLDERto the uncompressed sequence folder. ChangeASSOCIATIONS_FILE
    to the path to the corresponding associations file.
./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUMX.yaml PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE

#7. ROS Examples

Building the nodes for mono, monoAR,
stereo and RGB-D

  1. Add the path including Examples/ROS/ORB_SLAM2 to the ROS_PACKAGE_PATH environment variable. Open .bashrc file and add at the end the following line. Replace PATH by the folder where you cloned ORB_SLAM2:
export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH}:PATH/ORB_SLAM2/Examples/ROS
  1. Execute build_ros.sh script:
chmod +x build_ros.sh
./build_ros.sh

Running Monocular Node

For a monocular input from topic /camera/image_raw run node ORB_SLAM2/Mono. You will need to provide the vocabulary file and a settings file. See the monocular examples above.

rosrun ORB_SLAM2 Mono PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE

Running Monocular Augmented Reality Demo

This is a demo of augmented reality where you can use an interface to insert virtual cubes in planar regions of the scene.The node reads images from topic/camera/image_raw.

rosrun ORB_SLAM2 MonoAR PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE

Running Stereo Node

For a stereo input from topic /camera/left/image_raw and /camera/right/image_raw run node ORB_SLAM2/Stereo. You will need to provide the vocabulary file and a settings file. If youprovide rectification matrices
(see Examples/Stereo/EuRoC.yaml example), the node will recitify the images online,otherwise images must be pre-rectified.

rosrun ORB_SLAM2 Stereo PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE ONLINE_RECTIFICATION

Example: Download a rosbag (e.g. V1_01_easy.bag) from the EuRoC dataset (http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets).
Open 3 tabs on the terminal and run the following command at each tab:

roscore
rosrun ORB_SLAM2 Stereo Vocabulary/ORBvoc.txt Examples/Stereo/EuRoC.yaml true
rosbag play --pause V1_01_easy.bag /cam0/image_raw:=/camera/left/image_raw /cam1/image_raw:=/camera/right/image_raw

Once ORB-SLAM2 has loaded the vocabulary, press space in the rosbag tab. Enjoy!. Note: a powerful computer is required to run the most exigent sequences of this dataset.

Running RGB_D Node

For an RGB-D input from topics /camera/rgb/image_raw and /camera/depth_registered/image_raw, run node ORB_SLAM2/RGBD. You will need to provide the vocabulary file and a settings file. See the RGB-D example above.

rosrun ORB_SLAM2 RGBD PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE

#8. Processing your own sequencesYou will need to create a settings file with the calibration of your camera. See the settings file provided for the TUM and KITTI datasets for monocular, stereo and RGB-D cameras. We use the calibration model of OpenCV. See
the examples to learn how to create a program that makes use of the ORB-SLAM2 library and how to pass images to the SLAM system. Stereo input must be synchronized and rectified. RGB-D input must be synchronized and depth registered.

#9. SLAM and Localization ModesYou can change between the SLAM and
Localization mode
using the GUI of the map viewer.

SLAM Mode

This is the default mode. The system runs in parallal three threads: Tracking, Local Mapping and Loop Closing. The system localizes the camera, builds new map and tries to close loops.

Localization Mode

This mode can be used when you have a good map of your working area. In this mode the Local Mapping and Loop Closing are deactivated. The system localizes the camera in the map (which is no longer updated), using relocalization if needed.

ROS:ubuntuKylin17.04-Ros使用OrbSLAM2的更多相关文章

  1. ROS:使用ubuntuKylin17.04安装ROS赤xi龟

    使用ubuntuKylin17.04安装 参考了此篇文章:SLAM: Ubuntu16.04安装ROS-kinetic 重复官方链接的步骤也没有成功. 此后发现4.10的内核,不能使用Kinetic. ...

  2. Ubuntu 16.04 + ROS Kinetic 机器人操作系统学习镜像分享与使用安装说明

    Ubuntu 16.04 + ROS Kinetic 镜像分享与使用安装说明 内容概要:1 网盘文件介绍  2 镜像制作  3 系统使用与安装 ---- 祝ROS爱好者和开发者新年快乐:-) ---- ...

  3. ubuntu16.04 ROS环境下配置和运行SVO

    ubuntu16.04 ROS环境下配置和运行SVO https://blog.csdn.net/nnUyi/article/details/78005552

  4. Ubuntu16.04 + ROS下串口通讯

    本文参考https://blog.csdn.net/weifengdq/article/details/84374690 由于工程需要,需要Ubuntu16.04 + ROS与STM32通讯,主要有两 ...

  5. Ubuntu14.04+ROS 启动本地摄像头

    STEP1安装usb_cam 创建一个工作空间,make一下 mkdir  -p ~/catkin_ws/src cd ~/catkin_ws/ catkin_make STEP2下面是安装usb_c ...

  6. Ubuntu 16.04 ROS环境配置

    最近新入职一家公司,是搞智能无人驾驶的,用的操作系统是Ubuntu和ros,之前没接触过ros系统,既然公司用那就必须的学习啊,话不多说先装它一个ros玩玩... 1. Ubuntu 安装 ROS K ...

  7. Learning ROS: Ubuntu16.04下kinetic开发环境安装和初体验 Install + Configure + Navigating(look around) + Creating a Package(catkin_create_pkg) + Building a Package(catkin_make) + Understanding Nodes

    本文主要部分来源于ROS官网的Tutorials. Ubuntu install of ROS Kinetic # Setup your sources.list sudo sh -c 'echo & ...

  8. SLAM+语音机器人DIY系列:(二)ROS入门——1.ROS是什么

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  9. SLAM+语音机器人DIY系列:(二)ROS入门——2.ROS系统整体架构

    摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...

  10. ROS Learning-009 beginner_Tutorials ROS服务 和 ROS参数

    ROS Indigo beginner_Tutorials-08 ROS服务 和 ROS参数 我使用的虚拟机软件:VMware Workstation 11 使用的Ubuntu系统:Ubuntu 14 ...

随机推荐

  1. PAT 1119 Pre- and Post-order Traversals

    Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can ...

  2. springcloud(四):Eureka客户端公共组件打包方式

    ,      一.前言  各位大佬应该知道,在大型项目中都需要有数据传输层,一般项目都采用的是MVC结构,如果有10个表,则会创建10个实体类,在各个层之间应该使用实体类传递数据: 在微服架构中,也许 ...

  3. GeoTrust 企业(OV)型 多域名(SAN/UC)版

     GeoTrust 企业(OV)型 多域名(SAN/UC)版 SSL证书(GeoTrust True BusinessID With Multi-Domain(SAN/UC) ),支持多域名,属于企业 ...

  4. 【Codeforces 467C】George and Job

    [链接] 我是链接,点我呀:) [题意] 让你从1..n这n个数字中 选出来k个不相交的长度为m的区间 然后这个k个区间的和最大 求出这k个区间的和的最大值 [题解] 设dp[i][j]表示前i个数字 ...

  5. 51nod挑的部分5级题

    最近心情不好所以写代码来获得快落 4级题有点难做?然后就开始挑简单的5级题开始写 然后准备记录一些自己没有做出来 参考讨论区或者博客才做出来的题目 51nod_1189 阶乘分数 这个题参考了讨论区 ...

  6. nyoj_915_+-字符串_201402261520

    +-字符串 时间限制:1000 ms  |           内存限制:65535 KB 难度:1   描述 Shiva得到了两个只有加号和减号的字符串,字串长度相同.Shiva一次可以把一个加号和 ...

  7. mongodb之用户/认证/角色/权限管理

    前言 用户权限管理很重要,只给需要的权限,防止应用系统漏洞导致脱库 认证和授权 Authentication 认证识别,解决我是谁 Authorization 操作授权,我能做什么 认证机制 MONG ...

  8. web项目log日志查看分析->流程理解

    1.DEBUG [2017-07-10 11:38:41,705][] org.springframework.web.servlet.DispatcherServlet:865 - Dispatch ...

  9. mybatis sql语句#{}和${}区别联系

    1.说白了就是,#{}用于引用字符变量,如varchar,string.因为sql语句执行过程中要给string varchar加‘’来执行. 2.${}用来引用int型等不需要添加单引号的值 3.具 ...

  10. Tween公式

    Tween公式 4个参数 t:current time(当前时间) b:beginning value(初始值) c: change in value(变化量) d:duration(持续时间) re ...