OpenCv 人脸检測的学习
近期公司要组织开发分享,可是自己还是新手真的不知道分享啥了,然后看了看前段时间研究过OpenCv,那么就分享他把。
openCv就不介绍了,说下人脸检測。事实上是通过openCv里边已经训练好的xml文件来进行的,我仅仅是在学习。
我測试中我写了俩个Demo。当中一个是通过Carame来通过摄像头来进行人脸检測看看效果图:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="507" height="301" alt="">
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="507" height="301" alt="">
能够看出检測出来的面部有线框。
第一个Dmeo是通过Jni编程来实现的人脸检測,
(1)这是本地方法
package com.example.opencv.checkface2; import org.opencv.core.Mat;
import org.opencv.core.MatOfRect; public class DetectionBasedTracker
{
public DetectionBasedTracker(String cascadeName, int minFaceSize) {
mNativeObj = nativeCreateObject(cascadeName, minFaceSize);
} public void start() {
nativeStart(mNativeObj);
} public void stop() {
nativeStop(mNativeObj);
} public void setMinFaceSize(int size) {
nativeSetFaceSize(mNativeObj, size);
} public void detect(Mat imageGray, MatOfRect faces) {
nativeDetect(mNativeObj, imageGray.getNativeObjAddr(), faces.getNativeObjAddr());
} public void release() {
nativeDestroyObject(mNativeObj);
mNativeObj = 0;
} private long mNativeObj = 0; private static native long nativeCreateObject(String cascadeName, int minFaceSize);
private static native void nativeDestroyObject(long thiz);
private static native void nativeStart(long thiz);
private static native void nativeStop(long thiz);
private static native void nativeSetFaceSize(long thiz, int size);
private static native void nativeDetect(long thiz, long inputImage, long faces);
}
(2)通过jni调用人脸接触:
package com.example.opencv.checkface2; import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream; import org.opencv.android.BaseLoaderCallback;
import org.opencv.android.CameraBridgeViewBase;
import org.opencv.android.CameraBridgeViewBase.CvCameraViewFrame;
import org.opencv.android.CameraBridgeViewBase.CvCameraViewListener2;
import org.opencv.android.LoaderCallbackInterface;
import org.opencv.android.OpenCVLoader;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.objdetect.CascadeClassifier; import android.app.Activity;
import android.content.Context;
import android.os.Bundle;
import android.util.Log;
import android.view.Menu;
import android.view.MenuItem;
import android.view.WindowManager; public class MainActivity extends Activity implements CvCameraViewListener2 { private static final String TAG = "OCVSample::Activity";
private static final Scalar FACE_RECT_COLOR = new Scalar(0, 255, 0, 255);
public static final int JAVA_DETECTOR = 0;
public static final int NATIVE_DETECTOR = 1; private MenuItem mItemFace50;
private MenuItem mItemFace40;
private MenuItem mItemFace30;
private MenuItem mItemFace20;
private MenuItem mItemType; private Mat mRgba;
private Mat mGray;
private File mCascadeFile;
private CascadeClassifier mJavaDetector;
private DetectionBasedTracker mNativeDetector; private int mDetectorType = JAVA_DETECTOR;
private String[] mDetectorName; private float mRelativeFaceSize = 0.2f;
private int mAbsoluteFaceSize = 0; private CameraBridgeViewBase mOpenCvCameraView; private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
@Override
public void onManagerConnected(int status) {
switch (status) {
case LoaderCallbackInterface.SUCCESS:
{
Log.i(TAG, "OpenCV loaded successfully"); // Load native library after(!) OpenCV initialization
System.loadLibrary("detection_based_tracker"); try {
// load cascade file from application resources
InputStream is = getResources().openRawResource(R.raw.lbpcascade_frontalface);
File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
mCascadeFile = new File(cascadeDir, "lbpcascade_frontalface.xml");
FileOutputStream os = new FileOutputStream(mCascadeFile); byte[] buffer = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) != -1) {
os.write(buffer, 0, bytesRead);
}
is.close();
os.close(); mJavaDetector = new CascadeClassifier(mCascadeFile.getAbsolutePath());
if (mJavaDetector.empty()) {
Log.e(TAG, "Failed to load cascade classifier");
mJavaDetector = null;
} else
Log.i(TAG, "Loaded cascade classifier from " + mCascadeFile.getAbsolutePath()); mNativeDetector = new DetectionBasedTracker(mCascadeFile.getAbsolutePath(), 0); cascadeDir.delete(); } catch (IOException e) {
e.printStackTrace();
Log.e(TAG, "Failed to load cascade. Exception thrown: " + e);
} mOpenCvCameraView.enableView();
} break;
default:
{
super.onManagerConnected(status);
} break;
}
}
}; public MainActivity() {
mDetectorName = new String[2];
mDetectorName[JAVA_DETECTOR] = "Java";
mDetectorName[NATIVE_DETECTOR] = "Native (tracking)"; Log.i(TAG, "Instantiated new " + this.getClass());
} /** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
Log.i(TAG, "called onCreate");
super.onCreate(savedInstanceState);
getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON); setContentView(R.layout.activity_main); mOpenCvCameraView = (CameraBridgeViewBase) findViewById(R.id.fd_activity_surface_view);
mOpenCvCameraView.setCvCameraViewListener(this);
} @Override
public void onPause()
{
super.onPause();
if (mOpenCvCameraView != null)
mOpenCvCameraView.disableView();
} @Override
public void onResume()
{
super.onResume();
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_9, this, mLoaderCallback);
} public void onDestroy() {
super.onDestroy();
mOpenCvCameraView.disableView();
} public void onCameraViewStarted(int width, int height) {
mGray = new Mat();
mRgba = new Mat();
} public void onCameraViewStopped() {
mGray.release();
mRgba.release();
} public Mat onCameraFrame(CvCameraViewFrame inputFrame) { mRgba = inputFrame.rgba();
mGray = inputFrame.gray(); if (mAbsoluteFaceSize == 0) {
int height = mGray.rows();
if (Math.round(height * mRelativeFaceSize) > 0) {
mAbsoluteFaceSize = Math.round(height * mRelativeFaceSize);
}
mNativeDetector.setMinFaceSize(mAbsoluteFaceSize);
} MatOfRect faces = new MatOfRect(); if (mDetectorType == JAVA_DETECTOR) {
if (mJavaDetector != null)
mJavaDetector.detectMultiScale(mGray, faces);
}
else if (mDetectorType == NATIVE_DETECTOR) {
if (mNativeDetector != null)
mNativeDetector.detect(mGray, faces);
}
else {
Log.e(TAG, "Detection method is not selected!");
} Rect[] facesArray = faces.toArray();
for (int i = 0; i < facesArray.length; i++)
Core.rectangle(mRgba, facesArray[i].tl(), facesArray[i].br(), FACE_RECT_COLOR, 3); return mRgba;
} @Override
public boolean onCreateOptionsMenu(Menu menu) {
Log.i(TAG, "called onCreateOptionsMenu");
mItemFace50 = menu.add("Face size 50%");
mItemFace40 = menu.add("Face size 40%");
mItemFace30 = menu.add("Face size 30%");
mItemFace20 = menu.add("Face size 20%");
mItemType = menu.add(mDetectorName[mDetectorType]);
return true;
} @Override
public boolean onOptionsItemSelected(MenuItem item) {
Log.i(TAG, "called onOptionsItemSelected; selected item: " + item);
if (item == mItemFace50)
setMinFaceSize(0.5f);
else if (item == mItemFace40)
setMinFaceSize(0.4f);
else if (item == mItemFace30)
setMinFaceSize(0.3f);
else if (item == mItemFace20)
setMinFaceSize(0.2f);
else if (item == mItemType) {
mDetectorType = (mDetectorType + 1) % mDetectorName.length;
item.setTitle(mDetectorName[mDetectorType]);
setDetectorType(mDetectorType);
}
return true;
} private void setMinFaceSize(float faceSize) {
mRelativeFaceSize = faceSize;
mAbsoluteFaceSize = 0;
} private void setDetectorType(int type) {
if (mDetectorType != type) {
mDetectorType = type; if (type == NATIVE_DETECTOR) {
Log.i(TAG, "Detection Based Tracker enabled");
mNativeDetector.start();
} else {
Log.i(TAG, "Cascade detector enabled");
mNativeDetector.stop();
}
}
}
}
(3)这是本地方法c++实现代码:
#include <DetectionBasedTracker_jni.h>
#include <opencv2/core/core.hpp>
#include <opencv2/contrib/detection_based_tracker.hpp> #include <string>
#include <vector> #include <android/log.h> #define LOG_TAG "FaceDetection/DetectionBasedTracker"
#define LOGD(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__)) using namespace std;
using namespace cv; inline void vector_Rect_to_Mat(vector<Rect>& v_rect, Mat& mat)
{
mat = Mat(v_rect, true);
} JNIEXPORT jlong JNICALL Java_com_example_opencv_checkface2_DetectionBasedTracker_nativeCreateObject
(JNIEnv * jenv, jclass, jstring jFileName, jint faceSize)
{
LOGD("Java_org_opencv_samples_facedetect_DetectionBasedTracker_nativeCreateObject enter");
const char* jnamestr = jenv->GetStringUTFChars(jFileName, NULL);//得到利用UTF-8编码的C/C++字符串,此字符串为存储分类器的路径。 string stdFileName(jnamestr);
jlong result = 0; try
{
DetectionBasedTracker::Parameters DetectorParams;
if (faceSize > 0)
DetectorParams.minObjectSize = faceSize;
result = (jlong)new DetectionBasedTracker(stdFileName, DetectorParams);
}
catch(cv::Exception& e)
{
LOGD("nativeCreateObject caught cv::Exception: %s", e.what());
jclass je = jenv->FindClass("org/opencv/core/CvException");
if(!je)
je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, e.what());
}
catch (...)
{
LOGD("nativeCreateObject caught unknown exception");
jclass je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
return 0;
} LOGD("Java_org_opencv_samples_facedetect_DetectionBasedTracker_nativeCreateObject exit");
return result;
} JNIEXPORT void JNICALL Java_com_example_opencv_checkface2_DetectionBasedTracker_nativeDestroyObject
(JNIEnv * jenv, jclass, jlong thiz)
{
LOGD("Java_org_opencv_samples_facedetect_DetectionBasedTracker_nativeDestroyObject enter");
try
{
if(thiz != 0)
{
((DetectionBasedTracker*)thiz)->stop();
delete (DetectionBasedTracker*)thiz;
}
}
catch(cv::Exception& e)
{
LOGD("nativeestroyObject caught cv::Exception: %s", e.what());
jclass je = jenv->FindClass("org/opencv/core/CvException");
if(!je)
je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, e.what());
}
catch (...)
{
LOGD("nativeDestroyObject caught unknown exception");
jclass je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
}
LOGD("Java_org_opencv_samples_facedetect_DetectionBasedTracker_nativeDestroyObject exit");
} JNIEXPORT void JNICALL Java_com_example_opencv_checkface2_DetectionBasedTracker_nativeStart
(JNIEnv * jenv, jclass, jlong thiz)
{
LOGD("Java_org_opencv_samples_facedetect_DetectionBasedTracker_nativeStart enter");
try
{
((DetectionBasedTracker*)thiz)->run();
}
catch(cv::Exception& e)
{
LOGD("nativeStart caught cv::Exception: %s", e.what());
jclass je = jenv->FindClass("org/opencv/core/CvException");
if(!je)
je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, e.what());
}
catch (...)
{
LOGD("nativeStart caught unknown exception");
jclass je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
}
LOGD("Java_org_opencv_samples_facedetect_DetectionBasedTracker_nativeStart exit");
} JNIEXPORT void JNICALL Java_com_example_opencv_checkface2_DetectionBasedTracker_nativeStop
(JNIEnv * jenv, jclass, jlong thiz)
{
LOGD("Java_org_opencv_samples_facedetect_DetectionBasedTracker_nativeStop enter");
try
{
((DetectionBasedTracker*)thiz)->stop();
}
catch(cv::Exception& e)
{
LOGD("nativeStop caught cv::Exception: %s", e.what());
jclass je = jenv->FindClass("org/opencv/core/CvException");
if(!je)
je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, e.what());
}
catch (...)
{
LOGD("nativeStop caught unknown exception");
jclass je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
}
LOGD("Java_org_opencv_samples_facedetect_DetectionBasedTracker_nativeStop exit");
} JNIEXPORT void JNICALL Java_com_example_opencv_checkface2_DetectionBasedTracker_nativeSetFaceSize
(JNIEnv * jenv, jclass, jlong thiz, jint faceSize)
{
LOGD("Java_org_opencv_samples_facedetect_DetectionBasedTracker_nativeSetFaceSize enter");
try
{
if (faceSize > 0)
{
DetectionBasedTracker::Parameters DetectorParams = \
((DetectionBasedTracker*)thiz)->getParameters();
DetectorParams.minObjectSize = faceSize;
((DetectionBasedTracker*)thiz)->setParameters(DetectorParams);
}
}
catch(cv::Exception& e)
{
LOGD("nativeStop caught cv::Exception: %s", e.what());
jclass je = jenv->FindClass("org/opencv/core/CvException");
if(!je)
je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, e.what());
}
catch (...)
{
LOGD("nativeSetFaceSize caught unknown exception");
jclass je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
}
LOGD("Java_org_opencv_samples_facedetect_DetectionBasedTracker_nativeSetFaceSize exit");
} JNIEXPORT void JNICALL Java_com_example_opencv_checkface2_DetectionBasedTracker_nativeDetect
(JNIEnv * jenv, jclass, jlong thiz, jlong imageGray, jlong faces)
{
LOGD("Java_org_opencv_samples_facedetect_DetectionBasedTracker_nativeDetect enter");
try
{
vector<Rect> RectFaces;
((DetectionBasedTracker*)thiz)->process(*((Mat*)imageGray));
((DetectionBasedTracker*)thiz)->getObjects(RectFaces);
vector_Rect_to_Mat(RectFaces, *((Mat*)faces));
}
catch(cv::Exception& e)
{
LOGD("nativeCreateObject caught cv::Exception: %s", e.what());
jclass je = jenv->FindClass("org/opencv/core/CvException");
if(!je)
je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, e.what());
}
catch (...)
{
LOGD("nativeDetect caught unknown exception");
jclass je = jenv->FindClass("java/lang/Exception");
jenv->ThrowNew(je, "Unknown exception in JNI code {highgui::VideoCapture_n_1VideoCapture__()}");
}
LOGD("Java_org_opencv_samples_facedetect_DetectionBasedTracker_nativeDetect exit");
}
这样就能实现人脸检測了,后边我会把Demo上传。
第二个Demo事实上与第一个非常相似,我仅仅是通过载入了训练方法以后对选择的图片进行人脸检測。你让你更加清楚的看到效果:
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="301" height="500" alt="">
能够看到这个也检測出来了。可是要注意的一点是如今我用的这个训练文件检測人脸的时候人必须是正的,不能到
package com.example.opencv_checkface_1; import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream; import org.opencv.android.BaseLoaderCallback;
import org.opencv.android.LoaderCallbackInterface;
import org.opencv.android.OpenCVLoader;
import org.opencv.android.Utils;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.objdetect.CascadeClassifier; import android.app.Activity;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.BitmapFactory.Options;
import android.os.Bundle;
import android.os.Environment;
import android.provider.MediaStore.Images.ImageColumns;
import android.util.Log;
import android.view.Menu;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.ImageView;
import android.widget.TextView; public class MainActivity extends Activity {
private static final String TAG = "OpenCv脸部检測";
private ImageView mIv_img;
private TextView mTv_faction;
private Button mBtn_check;
private Button mBtn_choose;
private Bitmap mBitmap = null;
private String mPath = Environment.getExternalStorageDirectory().getAbsolutePath() + "/haarcascade_frontalface_alt2.xml";
private File mCascadeFile;
private CascadeClassifier mJavaDetector;
private CascadeClassifier cascadeClassifier;
private BaseLoaderCallback callback = new BaseLoaderCallback(this) {
public void onManagerConnected(int status) { switch (status) {
case LoaderCallbackInterface.SUCCESS: {
try {
// load cascade file from application resources
InputStream is = getResources().openRawResource(R.raw.lbpcascade_frontalface);
File cascadeDir = getDir("cascade", Context.MODE_PRIVATE);
mCascadeFile = new File(cascadeDir, "lbpcascade_frontalface.xml");
FileOutputStream os = new FileOutputStream(mCascadeFile); byte[] buffer = new byte[4096];
int bytesRead;
while ((bytesRead = is.read(buffer)) != -1) {
os.write(buffer, 0, bytesRead);
}
is.close();
os.close(); mJavaDetector = new CascadeClassifier(mCascadeFile.getAbsolutePath());
if (mJavaDetector.empty()) {
Log.e(TAG, "Failed to load cascade classifier");
mJavaDetector = null;
} else
Log.i(TAG, "Loaded cascade classifier from " + mCascadeFile.getAbsolutePath()); cascadeClassifier = new CascadeClassifier(mCascadeFile.getAbsolutePath()); cascadeDir.delete(); } catch (IOException e) {
e.printStackTrace();
Log.e(TAG, "Failed to load cascade. Exception thrown: " + e);
}
}
break;
default: {
super.onManagerConnected(status);
}
break;
}
};
};
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
init();
} public void init(){
Log.e(TAG, mPath);
File file = new File(mPath);
if (file.exists()) {
Log.e(TAG, "文件存在");
}else
Log.e(TAG, "文件不存在");
mIv_img = (ImageView)findViewById(R.id.iv_img);
mTv_faction = (TextView)findViewById(R.id.tv_faction);
mBtn_check = (Button)findViewById(R.id.btn_check);
mBtn_choose = (Button)findViewById(R.id.btn_choose);
mBtn_check.setOnClickListener(new OnClickListener() { @Override
public void onClick(View v) { Mat testmat = new Mat(); Utils.bitmapToMat(mBitmap, testmat);
MatOfRect facedetect = new MatOfRect(); cascadeClassifier.detectMultiScale(testmat, facedetect); int facenum = 0;
for (Rect rect : facedetect.toArray()) {
Core.rectangle(testmat, new Point(rect.x, rect.y), new Point(
rect.x + rect.width, rect.y + rect.height), new Scalar(
255, 0, 0));
++facenum;
}
Utils.matToBitmap(testmat, mBitmap);
mIv_img.setImageBitmap(mBitmap);
mTv_faction.setText("Facecount:" + facenum);
}
}); mBtn_choose.setOnClickListener(new OnClickListener() { @Override
public void onClick(View v) {
Intent intent = new Intent();
intent.setAction(Intent.ACTION_PICK);
intent.setType("image/*");
startActivityForResult(intent, 1);
}
}); } @Override
public boolean onCreateOptionsMenu(Menu menu) {
getMenuInflater().inflate(R.menu.main, menu);
return true;
} @Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
// TODO Auto-generated method stub
super.onActivityResult(requestCode, resultCode, data); // the image picker callback
if (requestCode == 1) {
if (data != null) { Cursor cursor = getContentResolver().query(data.getData(),
null, null, null, null);
cursor.moveToFirst();
int idx = cursor.getColumnIndex(ImageColumns.DATA);
String fileSrc = cursor.getString(idx); Options options = new Options();
options.inJustDecodeBounds = true;
mBitmap = BitmapFactory.decodeFile(fileSrc, options); options.inSampleSize = Math.max(1, (int) Math.ceil(Math.max(
(double) options.outWidth / 1024f,
(double) options.outHeight / 1024f)));
options.inJustDecodeBounds = false;
mBitmap = BitmapFactory.decodeFile(fileSrc, options);
mTv_faction.setText("Clik Detect. ==>"); mIv_img.setImageBitmap(mBitmap);
mBtn_check.setVisibility(View.VISIBLE);
} else {
Log.d(TAG, "idButSelPic Photopicker canceled");
}
}
} @Override
protected void onResume() {
// TODO Auto-generated method stub
super.onResume();
// 通过OpenCV引擎服务载入并初始化OpenCV类库,所谓OpenCV引擎服务即是
// OpenCV_2.4.9.2_Manager_2.4_*.apk程序包。存在于OpenCV安装包的apk文件夹中
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_2_4_9, this,
callback);
} }
对了,測试中使用的训练文件lbpcascade_frontalface.xml。你能够选择自己想用的
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">
<?xml version="1.0"? >
<!--
number of positive samples 3000
number of negative samples 1500
-->
<opencv_storage>
<cascade type_id="opencv-cascade-classifier">
<stageType>BOOST</stageType>
<featureType>LBP</featureType>
<height>24</height>
<width>24</width>
<stageParams>
<boostType>GAB</boostType>
<minHitRate>0.9950000047683716</minHitRate>
<maxFalseAlarm>0.5000000000000000</maxFalseAlarm>
<weightTrimRate>0.9500000000000000</weightTrimRate>
<maxDepth>1</maxDepth>
<maxWeakCount>100</maxWeakCount></stageParams>
<featureParams>
<maxCatCount>256</maxCatCount></featureParams>
<stageNum>20</stageNum>
<stages>
<!-- stage 0 -->
<_>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>-0.7520892024040222</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 46 -67130709 -21569 -1426120013 -1275125205 -21585
-16385 587145899 -24005</internalNodes>
<leafValues>
-0.6543210148811340 0.8888888955116272</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 13 -163512766 -769593758 -10027009 -262145 -514457854
-193593353 -524289 -1</internalNodes>
<leafValues>
-0.7739216089248657 0.7278633713722229</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 2 -363936790 -893203669 -1337948010 -136907894
1088782736 -134217726 -741544961 -1590337</internalNodes>
<leafValues>
-0.7068563103675842 0.6761534214019775</leafValues></_></weakClassifiers></_>
<!-- stage 1 -->
<_>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>-0.4872078299522400</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 84 2147483647 1946124287 -536870913 2147450879
738132490 1061101567 243204619 2147446655</internalNodes>
<leafValues>
-0.8083735704421997 0.7685696482658386</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 21 2147483647 263176079 1879048191 254749487 1879048191
-134252545 -268435457 801111999</internalNodes>
<leafValues>
-0.7698410153388977 0.6592915654182434</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 106 -98110272 1610939566 -285484400 -850010381
-189334372 -1671954433 -571026695 -262145</internalNodes>
<leafValues>
-0.7506558895111084 0.5444605946540833</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 48 -798690576 -131075 1095771153 -237144073 -65569 -1
-216727745 -69206049</internalNodes>
<leafValues>
-0.7775990366935730 0.5465461611747742</leafValues></_></weakClassifiers></_>
<!-- stage 2 -->
<_>
<maxWeakCount>4</maxWeakCount>
<stageThreshold>-1.1592328548431396</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 47 -21585 -20549 -100818262 -738254174 -20561 -36865
-151016790 -134238549</internalNodes>
<leafValues>
-0.5601882934570313 0.7743113040924072</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 12 -286003217 183435247 -268994614 -421330945
-402686081 1090387966 -286785545 -402653185</internalNodes>
<leafValues>
-0.6124526262283325 0.6978127956390381</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 26 -50347012 970882927 -50463492 -1253377 -134218251
-50364513 -33619992 -172490753</internalNodes>
<leafValues>
-0.6114496588706970 0.6537628173828125</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 8 -273 -135266321 1877977738 -2088243418 -134217987
2146926575 -18910642 1095231247</internalNodes>
<leafValues>
-0.6854077577590942 0.5403239130973816</leafValues></_></weakClassifiers></_>
<!-- stage 3 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-0.7562355995178223</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 96 -1273 1870659519 -20971602 -67633153 -134250731
2004875127 -250 -150995969</internalNodes>
<leafValues>
-0.4051094949245453 0.7584033608436585</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 33 -868162224 -76810262 -4262145 -257 1465211989
-268959873 -2656269 -524289</internalNodes>
<leafValues>
-0.7388162612915039 0.5340843200683594</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 57 -12817 -49 -541103378 -152950 -38993 -20481 -1153876
-72478976</internalNodes>
<leafValues>
-0.6582943797111511 0.5339496731758118</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 125 -269484161 -452984961 -319816180 -1594032130 -2111
-990117891 -488975296 -520947741</internalNodes>
<leafValues>
-0.5981323719024658 0.5323504805564880</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 53 557787431 670265215 -1342193665 -1075892225
1998528318 1056964607 -33570977 -1</internalNodes>
<leafValues>
-0.6498787999153137 0.4913350641727448</leafValues></_></weakClassifiers></_>
<!-- stage 4 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-0.8085358142852783</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 60 -536873708 880195381 -16842788 -20971521 -176687276
-168427659 -16777260 -33554626</internalNodes>
<leafValues>
-0.5278195738792419 0.6946372389793396</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 7 -1 -62981529 -1090591130 805330978 -8388827 -41945787
-39577 -531118985</internalNodes>
<leafValues>
-0.5206505060195923 0.6329920291900635</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 98 -725287348 1347747543 -852489 -16809993 1489881036
-167903241 -1 -1</internalNodes>
<leafValues>
-0.7516061067581177 0.4232024252414703</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 44 -32777 1006582562 -65 935312171 -8388609 -1078198273
-1 733886267</internalNodes>
<leafValues>
-0.7639313936233521 0.4123568832874298</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 24 -85474705 2138828511 -1036436754 817625855
1123369029 -58796809 -1013468481 -194513409</internalNodes>
<leafValues>
-0.5123769044876099 0.5791834592819214</leafValues></_></weakClassifiers></_>
<!-- stage 5 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-0.5549971461296082</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 42 -17409 -20481 -268457797 -134239493 -17473 -1 -21829
-21846</internalNodes>
<leafValues>
-0.3763174116611481 0.7298233509063721</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 6 -805310737 -2098262358 -269504725 682502698
2147483519 1740574719 -1090519233 -268472385</internalNodes>
<leafValues>
-0.5352765917778015 0.5659480094909668</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 61 -67109678 -6145 -8 -87884584 -20481 -1073762305
-50856216 -16849696</internalNodes>
<leafValues>
-0.5678374171257019 0.4961479902267456</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 123 -138428633 1002418167 -1359008245 -1908670465
-1346685918 910098423 -1359010520 -1346371657</internalNodes>
<leafValues>
-0.5706262588500977 0.4572288393974304</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 9 -89138513 -4196353 1256531674 -1330665426 1216308261
-36190633 33498198 -151796633</internalNodes>
<leafValues>
-0.5344601869583130 0.4672054052352905</leafValues></_></weakClassifiers></_>
<!-- stage 6 -->
<_>
<maxWeakCount>5</maxWeakCount>
<stageThreshold>-0.8776460289955139</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 105 1073769576 206601725 -34013449 -33554433 -789514004
-101384321 -690225153 -264193</internalNodes>
<leafValues>
-0.7700348496437073 0.5943940877914429</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 30 -1432340997 -823623681 -49153 -34291724 -269484035
-1342767105 -1078198273 -1277955</internalNodes>
<leafValues>
-0.5043668746948242 0.6151274442672730</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 35 -1067385040 -195758209 -436748425 -134217731
-50855988 -129 -1 -1</internalNodes>
<leafValues>
-0.6808040738105774 0.4667325913906097</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 119 832534325 -34111555 -26050561 -423659521 -268468364
2105014143 -2114244 -17367185</internalNodes>
<leafValues>
-0.4927591383457184 0.5401885509490967</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 82 -1089439888 -1080524865 2143059967 -1114121
-1140949004 -3 -2361356 -739516</internalNodes>
<leafValues>
-0.6445107460021973 0.4227822124958038</leafValues></_></weakClassifiers></_>
<!-- stage 7 -->
<_>
<maxWeakCount>6</maxWeakCount>
<stageThreshold>-1.1139287948608398</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 52 -1074071553 -1074003969 -1 -1280135430 -5324817 -1
-335548482 582134442</internalNodes>
<leafValues>
-0.5307556986808777 0.6258179545402527</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 99 -706937396 -705364068 -540016724 -570495027
-570630659 -587857963 -33628164 -35848193</internalNodes>
<leafValues>
-0.5227634310722351 0.5049746036529541</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 18 -2035630093 42119158 -268503053 -1671444 261017599
1325432815 1954394111 -805306449</internalNodes>
<leafValues>
-0.4983572661876679 0.5106441378593445</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 111 -282529488 -1558073088 1426018736 -170526448
-546832487 -5113037 -34243375 -570427929</internalNodes>
<leafValues>
-0.4990860521793366 0.5060507059097290</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 92 1016332500 -606301707 915094269 -1080086049
-1837027144 -1361600280 2147318747 1067975613</internalNodes>
<leafValues>
-0.5695009231567383 0.4460467398166657</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 51 -656420166 -15413034 -141599534 -603435836
1505950458 -787556946 -79823438 -1326199134</internalNodes>
<leafValues>
-0.6590405106544495 0.3616424500942230</leafValues></_></weakClassifiers></_>
<!-- stage 8 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-0.8243625760078430</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 28 -901591776 -201916417 -262 -67371009 -143312112
-524289 -41943178 -1</internalNodes>
<leafValues>
-0.4972776770591736 0.6027074456214905</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 112 -4507851 -411340929 -268437513 -67502145 -17350859
-32901 -71344315 -29377</internalNodes>
<leafValues>
-0.4383158981800079 0.5966237187385559</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 69 -75894785 -117379438 -239063587 -12538500 1485072126
2076233213 2123118847 801906927</internalNodes>
<leafValues>
-0.6386105418205261 0.3977999985218048</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 19 -823480413 786628589 -16876049 -1364262914 242165211
1315930109 -696268833 -455082829</internalNodes>
<leafValues>
-0.5512794256210327 0.4282079637050629</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 73 -521411968 6746762 -1396236286 -2038436114
-185612509 57669627 -143132877 -1041235973</internalNodes>
<leafValues>
-0.6418755054473877 0.3549866080284119</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 126 -478153869 1076028979 -1645895615 1365298272
-557859073 -339771473 1442574528 -1058802061</internalNodes>
<leafValues>
-0.4841901361942291 0.4668019413948059</leafValues></_>
<!-- tree 6 -->
<_>
<internalNodes>
0 -1 45 -246350404 -1650402048 -1610612745 -788400696
1467604861 -2787397 1476263935 -4481349</internalNodes>
<leafValues>
-0.5855734348297119 0.3879135847091675</leafValues></_></weakClassifiers></_>
<!-- stage 9 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-1.2237116098403931</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 114 -24819 1572863935 -16809993 -67108865 2146778388
1433927541 -268608444 -34865205</internalNodes>
<leafValues>
-0.2518476545810700 0.7088654041290283</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 97 -1841359 -134271049 -32769 -5767369 -1116675 -2185
-8231 -33603327</internalNodes>
<leafValues>
-0.4303432404994965 0.5283288359642029</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 25 -1359507589 -1360593090 -1073778729 -269553812
-809512977 1744707583 -41959433 -134758978</internalNodes>
<leafValues>
-0.4259553551673889 0.5440809130668640</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 34 729753407 -134270989 -1140907329 -235200777
658456383 2147467263 -1140900929 -16385</internalNodes>
<leafValues>
-0.5605589151382446 0.4220733344554901</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 134 -310380553 -420675595 -193005472 -353568129
1205338070 -990380036 887604324 -420544526</internalNodes>
<leafValues>
-0.5192656517028809 0.4399855434894562</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 16 -1427119361 1978920959 -287119734 -487068946
114759245 -540578051 -707510259 -671660453</internalNodes>
<leafValues>
-0.5013077259063721 0.4570254683494568</leafValues></_>
<!-- tree 6 -->
<_>
<internalNodes>
0 -1 74 -738463762 -889949281 -328301948 -121832450
-1142658284 -1863576559 2146417353 -263185</internalNodes>
<leafValues>
-0.4631414115428925 0.4790246188640595</leafValues></_></weakClassifiers></_>
<!-- stage 10 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-0.5544230937957764</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 113 -76228780 -65538 -1 -67174401 -148007 -33 -221796
-272842924</internalNodes>
<leafValues>
-0.3949716091156006 0.6082032322883606</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 110 369147696 -1625232112 2138570036 -1189900 790708019
-1212613127 799948719 -4456483</internalNodes>
<leafValues>
-0.4855885505676270 0.4785369932651520</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 37 784215839 -290015241 536832799 -402984963
-1342414991 -838864897 -176769 -268456129</internalNodes>
<leafValues>
-0.4620285332202911 0.4989669024944305</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 41 -486418688 -171915327 -340294900 -21938 -519766032
-772751172 -73096060 -585322623</internalNodes>
<leafValues>
-0.6420643329620361 0.3624351918697357</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 117 -33554953 -475332625 -1423463824 -2077230421
-4849669 -2080505925 -219032928 -1071915349</internalNodes>
<leafValues>
-0.4820112884044647 0.4632140696048737</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 65 -834130468 -134217476 -1349314083 -1073803559
-619913764 -1449131844 -1386890321 -1979118423</internalNodes>
<leafValues>
-0.4465552568435669 0.5061788558959961</leafValues></_>
<!-- tree 6 -->
<_>
<internalNodes>
0 -1 56 -285249779 1912569855 -16530 -1731022870 -1161904146
-1342177297 -268439634 -1464078708</internalNodes>
<leafValues>
-0.5190586447715759 0.4441480338573456</leafValues></_></weakClassifiers></_>
<!-- stage 11 -->
<_>
<maxWeakCount>7</maxWeakCount>
<stageThreshold>-0.7161560654640198</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 20 1246232575 1078001186 -10027057 60102 -277348353
-43646987 -1210581153 1195769615</internalNodes>
<leafValues>
-0.4323809444904327 0.5663768053054810</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 15 -778583572 -612921106 -578775890 -4036478
-1946580497 -1164766570 -1986687009 -12103599</internalNodes>
<leafValues>
-0.4588732719421387 0.4547033011913300</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 129 -1073759445 2013231743 -1363169553 -1082459201
-1414286549 868185983 -1356133589 -1077936257</internalNodes>
<leafValues>
-0.5218553543090820 0.4111092388629913</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 102 -84148365 -2093417722 -1204850272 564290299
-67121221 -1342177350 -1309195902 -776734797</internalNodes>
<leafValues>
-0.4920000731945038 0.4326725304126740</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 88 -25694458 67104495 -290216278 -168563037 2083877442
1702788383 -144191964 -234882162</internalNodes>
<leafValues>
-0.4494568109512329 0.4448510706424713</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 59 -857980836 904682741 -1612267521 232279415
1550862252 -574825221 -357380888 -4579409</internalNodes>
<leafValues>
-0.5180826783180237 0.3888972699642181</leafValues></_>
<!-- tree 6 -->
<_>
<internalNodes>
0 -1 27 -98549440 -137838400 494928389 -246013630 939541351
-1196072350 -620603549 2137216273</internalNodes>
<leafValues>
-0.6081240773200989 0.3333222270011902</leafValues></_></weakClassifiers></_>
<!-- stage 12 -->
<_>
<maxWeakCount>8</maxWeakCount>
<stageThreshold>-0.6743940711021423</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 29 -150995201 2071191945 -1302151626 536934335
-1059008937 914128709 1147328110 -268369925</internalNodes>
<leafValues>
-0.1790193915367127 0.6605972051620483</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 128 -134509479 1610575703 -1342177289 1861484541
-1107833788 1577058173 -333558568 -136319041</internalNodes>
<leafValues>
-0.3681024610996246 0.5139749646186829</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 70 -1 1060154476 -1090984524 -630918524 -539492875
779616255 -839568424 -321</internalNodes>
<leafValues>
-0.3217232525348663 0.6171553134918213</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 4 -269562385 -285029906 -791084350 -17923776 235286671
1275504943 1344390399 -966276889</internalNodes>
<leafValues>
-0.4373284578323364 0.4358185231685638</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 76 17825984 -747628419 595427229 1474759671 575672208
-1684005538 872217086 -1155858277</internalNodes>
<leafValues>
-0.4404836893081665 0.4601220190525055</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 124 -336593039 1873735591 -822231622 -355795238
-470820869 -1997537409 -1057132384 -1015285005</internalNodes>
<leafValues>
-0.4294152259826660 0.4452161788940430</leafValues></_>
<!-- tree 6 -->
<_>
<internalNodes>
0 -1 54 -834212130 -593694721 -322142257 -364892500
-951029539 -302125121 -1615106053 -79249765</internalNodes>
<leafValues>
-0.3973052501678467 0.4854526817798615</leafValues></_>
<!-- tree 7 -->
<_>
<internalNodes>
0 -1 95 1342144479 2147431935 -33554561 -47873 -855685912 -1
1988052447 536827383</internalNodes>
<leafValues>
-0.7054683566093445 0.2697997391223908</leafValues></_></weakClassifiers></_>
<!-- stage 13 -->
<_>
<maxWeakCount>9</maxWeakCount>
<stageThreshold>-1.2042298316955566</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 39 1431368960 -183437936 -537002499 -137497097
1560590321 -84611081 -2097193 -513</internalNodes>
<leafValues>
-0.5905947685241699 0.5101932883262634</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 120 -1645259691 2105491231 2130706431 1458995007
-8567536 -42483883 -33780003 -21004417</internalNodes>
<leafValues>
-0.4449204802513123 0.4490709304809570</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 89 -612381022 -505806938 -362027516 -452985106
275854917 1920431639 -12600561 -134221825</internalNodes>
<leafValues>
-0.4693818688392639 0.4061094820499420</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 14 -805573153 -161 -554172679 -530519488 -16779441
2000682871 -33604275 -150997129</internalNodes>
<leafValues>
-0.3600351214408875 0.5056326985359192</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 67 6192 435166195 1467449341 2046691505 -1608493775
-4755729 -1083162625 -71365637</internalNodes>
<leafValues>
-0.4459891915321350 0.4132415652275085</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 86 -41689215 -3281034 1853357967 -420712635 -415924289
-270209208 -1088293113 -825311232</internalNodes>
<leafValues>
-0.4466069042682648 0.4135067760944367</leafValues></_>
<!-- tree 6 -->
<_>
<internalNodes>
0 -1 80 -117391116 -42203396 2080374461 -188709 -542008165
-356831940 -1091125345 -1073796897</internalNodes>
<leafValues>
-0.3394956290721893 0.5658645033836365</leafValues></_>
<!-- tree 7 -->
<_>
<internalNodes>
0 -1 75 -276830049 1378714472 -1342181951 757272098
1073740607 -282199241 -415761549 170896931</internalNodes>
<leafValues>
-0.5346512198448181 0.3584479391574860</leafValues></_>
<!-- tree 8 -->
<_>
<internalNodes>
0 -1 55 -796075825 -123166849 2113667055 -217530421
-1107432194 -16385 -806359809 -391188771</internalNodes>
<leafValues>
-0.4379335641860962 0.4123645126819611</leafValues></_></weakClassifiers></_>
<!-- stage 14 -->
<_>
<maxWeakCount>10</maxWeakCount>
<stageThreshold>-0.8402050137519836</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 71 -890246622 15525883 -487690486 47116238 -1212319899
-1291847681 -68159890 -469829921</internalNodes>
<leafValues>
-0.2670986354351044 0.6014143228530884</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 31 -1361180685 -1898008841 -1090588811 -285410071
-1074016265 -840443905 2147221487 -262145</internalNodes>
<leafValues>
-0.4149844348430634 0.4670888185501099</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 40 1426190596 1899364271 2142731795 -142607505
-508232452 -21563393 -41960001 -65</internalNodes>
<leafValues>
-0.4985891580581665 0.3719584941864014</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 109 -201337965 10543906 -236498096 -746195597
1974565825 -15204415 921907633 -190058309</internalNodes>
<leafValues>
-0.4568729996681213 0.3965812027454376</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 130 -595026732 -656401928 -268649235 -571490699
-440600392 -133131 -358810952 -2004088646</internalNodes>
<leafValues>
-0.4770836830139160 0.3862601518630981</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 66 941674740 -1107882114 1332789109 -67691015
-1360463693 -1556612430 -609108546 733546933</internalNodes>
<leafValues>
-0.4877715110778809 0.3778986334800720</leafValues></_>
<!-- tree 6 -->
<_>
<internalNodes>
0 -1 49 -17114945 -240061474 1552871558 -82775604 -932393844
-1308544889 -532635478 -99042357</internalNodes>
<leafValues>
-0.3721654713153839 0.4994400143623352</leafValues></_>
<!-- tree 7 -->
<_>
<internalNodes>
0 -1 133 -655906006 1405502603 -939205164 1884929228
-498859222 559417357 -1928559445 -286264385</internalNodes>
<leafValues>
-0.3934195041656494 0.4769641458988190</leafValues></_>
<!-- tree 8 -->
<_>
<internalNodes>
0 -1 0 -335837777 1860677295 -90 -1946186226 931096183
251612987 2013265917 -671232197</internalNodes>
<leafValues>
-0.4323300719261169 0.4342164099216461</leafValues></_>
<!-- tree 9 -->
<_>
<internalNodes>
0 -1 103 37769424 -137772680 374692301 2002666345 -536176194
-1644484728 807009019 1069089930</internalNodes>
<leafValues>
-0.4993278682231903 0.3665378093719482</leafValues></_></weakClassifiers></_>
<!-- stage 15 -->
<_>
<maxWeakCount>9</maxWeakCount>
<stageThreshold>-1.1974394321441650</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 43 -5505 2147462911 2143265466 -4511070 -16450 -257
-201348440 -71333206</internalNodes>
<leafValues>
-0.3310225307941437 0.5624626278877258</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 90 -136842268 -499330741 2015250980 -87107126
-641665744 -788524639 -1147864792 -134892563</internalNodes>
<leafValues>
-0.5266560912132263 0.3704403042793274</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 104 -146800880 -1780368555 2111170033 -140904684
-16777551 -1946681885 -1646463595 -839131947</internalNodes>
<leafValues>
-0.4171888828277588 0.4540435671806335</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 85 -832054034 -981663763 -301990281 -578814081
-932319000 -1997406723 -33555201 -69206017</internalNodes>
<leafValues>
-0.4556705355644226 0.3704262077808380</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 24 -118492417 -1209026825 1119023838 -1334313353
1112948738 -297319313 1378887291 -139469193</internalNodes>
<leafValues>
-0.4182529747486115 0.4267231225967407</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 78 -1714382628 -2353704 -112094959 -549613092
-1567058760 -1718550464 -342315012 -1074972227</internalNodes>
<leafValues>
-0.3625369668006897 0.4684656262397766</leafValues></_>
<!-- tree 6 -->
<_>
<internalNodes>
0 -1 5 -85219702 316836394 -33279 1904970288 2117267315
-260901769 -621461759 -88607770</internalNodes>
<leafValues>
-0.4742925167083740 0.3689507246017456</leafValues></_>
<!-- tree 7 -->
<_>
<internalNodes>
0 -1 11 -294654041 -353603585 -1641159686 -50331921
-2080899877 1145569279 -143132713 -152044037</internalNodes>
<leafValues>
-0.3666271567344666 0.4580127298831940</leafValues></_>
<!-- tree 8 -->
<_>
<internalNodes>
0 -1 32 1887453658 -638545712 -1877976819 -34320972
-1071067983 -661345416 -583338277 1060190561</internalNodes>
<leafValues>
-0.4567637443542481 0.3894708156585693</leafValues></_></weakClassifiers></_>
<!-- stage 16 -->
<_>
<maxWeakCount>9</maxWeakCount>
<stageThreshold>-0.5733128190040588</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 122 -994063296 1088745462 -318837116 -319881377
1102566613 1165490103 -121679694 -134744129</internalNodes>
<leafValues>
-0.4055117964744568 0.5487945079803467</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 68 -285233233 -538992907 1811935199 -369234005 -529
-20593 -20505 -1561401854</internalNodes>
<leafValues>
-0.3787897229194641 0.4532003402709961</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 58 -1335245632 1968917183 1940861695 536816369
-1226071367 -570908176 457026619 1000020667</internalNodes>
<leafValues>
-0.4258328974246979 0.4202791750431061</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 94 -1360318719 -1979797897 -50435249 -18646473
-608879292 -805306691 -269304244 -17840167</internalNodes>
<leafValues>
-0.4561023116111755 0.4002747833728790</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 87 2062765935 -16449 -1275080721 -16406 45764335
-1090552065 -772846337 -570464322</internalNodes>
<leafValues>
-0.4314672648906708 0.4086346626281738</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 127 -536896021 1080817663 -738234288 -965478709
-2082767969 1290855887 1993822934 -990381609</internalNodes>
<leafValues>
-0.4174543321132660 0.4249868988990784</leafValues></_>
<!-- tree 6 -->
<_>
<internalNodes>
0 -1 3 -818943025 168730891 -293610428 -79249354 669224671
621166734 1086506807 1473768907</internalNodes>
<leafValues>
-0.4321364760398865 0.4090838730335236</leafValues></_>
<!-- tree 7 -->
<_>
<internalNodes>
0 -1 79 -68895696 -67107736 -1414315879 -841676168
-619843344 -1180610531 -1081990469 1043203389</internalNodes>
<leafValues>
-0.5018386244773865 0.3702533841133118</leafValues></_>
<!-- tree 8 -->
<_>
<internalNodes>
0 -1 116 -54002134 -543485719 -2124882422 -1437445858
-115617074 -1195787391 -1096024366 -2140472445</internalNodes>
<leafValues>
-0.5037505626678467 0.3564981222152710</leafValues></_></weakClassifiers></_>
<!-- stage 17 -->
<_>
<maxWeakCount>9</maxWeakCount>
<stageThreshold>-0.4892596900463104</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 132 -67113211 2003808111 1862135111 846461923 -2752
2002237273 -273154752 1937223539</internalNodes>
<leafValues>
-0.2448196411132813 0.5689709186553955</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 62 1179423888 -78064940 -611839555 -539167899
-1289358360 -1650810108 -892540499 -1432827684</internalNodes>
<leafValues>
-0.4633283913135529 0.3587929606437683</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 23 -285212705 -78450761 -656212031 -264050110 -27787425
-1334349961 -547662981 -135796924</internalNodes>
<leafValues>
-0.3731099069118500 0.4290455579757690</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 77 341863476 403702016 -550588417 1600194541
-1080690735 951127993 -1388580949 -1153717473</internalNodes>
<leafValues>
-0.3658909499645233 0.4556473195552826</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 22 -586880702 -204831512 -100644596 -39319550
-1191150794 705692513 457203315 -75806957</internalNodes>
<leafValues>
-0.5214384198188782 0.3221037387847900</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 72 -416546870 545911370 -673716192 -775559454
-264113598 139424 -183369982 -204474641</internalNodes>
<leafValues>
-0.4289036989212036 0.4004956185817719</leafValues></_>
<!-- tree 6 -->
<_>
<internalNodes>
0 -1 50 -1026505020 -589692154 -1740499937 -1563770497
1348491006 -60710713 -1109853489 -633909413</internalNodes>
<leafValues>
-0.4621542394161224 0.3832748532295227</leafValues></_>
<!-- tree 7 -->
<_>
<internalNodes>
0 -1 108 -1448872304 -477895040 -1778390608 -772418127
-1789923416 -1612057181 -805306693 -1415842113</internalNodes>
<leafValues>
-0.3711548447608948 0.4612701535224915</leafValues></_>
<!-- tree 8 -->
<_>
<internalNodes>
0 -1 92 407905424 -582449988 52654751 -1294472 -285103725
-74633006 1871559083 1057955850</internalNodes>
<leafValues>
-0.5180652141571045 0.3205870389938355</leafValues></_></weakClassifiers></_>
<!-- stage 18 -->
<_>
<maxWeakCount>10</maxWeakCount>
<stageThreshold>-0.5911940932273865</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 81 4112 -1259563825 -846671428 -100902460 1838164148
-74153752 -90653988 -1074263896</internalNodes>
<leafValues>
-0.2592592537403107 0.5873016119003296</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 1 -285216785 -823206977 -1085589 -1081346 1207959293
1157103471 2097133565 -2097169</internalNodes>
<leafValues>
-0.3801195919513702 0.4718827307224274</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 121 -12465 -536875169 2147478367 2130706303 -37765492
-866124467 -318782328 -1392509185</internalNodes>
<leafValues>
-0.3509117066860199 0.5094807147979736</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 38 2147449663 -20741 -16794757 1945873146 -16710 -1
-8406341 -67663041</internalNodes>
<leafValues>
-0.4068757295608521 0.4130136370658875</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 17 -155191713 866117231 1651407483 548272812 -479201468
-447742449 1354229504 -261884429</internalNodes>
<leafValues>
-0.4557141065597534 0.3539792001247406</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 100 -225319378 -251682065 -492783986 -792341777
-1287261695 1393643841 -11274182 -213909521</internalNodes>
<leafValues>
-0.4117803275585175 0.4118592441082001</leafValues></_>
<!-- tree 6 -->
<_>
<internalNodes>
0 -1 63 -382220122 -2002072729 -51404800 -371201558
-923011069 -2135301457 -2066104743 -1042557441</internalNodes>
<leafValues>
-0.4008397758007050 0.4034757018089294</leafValues></_>
<!-- tree 7 -->
<_>
<internalNodes>
0 -1 101 -627353764 -48295149 1581203952 -436258614
-105268268 -1435893445 -638126888 -1061107126</internalNodes>
<leafValues>
-0.5694189667701721 0.2964762747287750</leafValues></_>
<!-- tree 8 -->
<_>
<internalNodes>
0 -1 118 -8399181 1058107691 -621022752 -251003468 -12582915
-574619739 -994397789 -1648362021</internalNodes>
<leafValues>
-0.3195341229438782 0.5294018983840942</leafValues></_>
<!-- tree 9 -->
<_>
<internalNodes>
0 -1 92 -348343812 -1078389516 1717960437 364735981
-1783841602 -4883137 -457572354 -1076950384</internalNodes>
<leafValues>
-0.3365339040756226 0.5067458748817444</leafValues></_></weakClassifiers></_>
<!-- stage 19 -->
<_>
<maxWeakCount>10</maxWeakCount>
<stageThreshold>-0.7612916231155396</stageThreshold>
<weakClassifiers>
<!-- tree 0 -->
<_>
<internalNodes>
0 -1 10 -1976661318 -287957604 -1659497122 -782068 43591089
-453637880 1435470000 -1077438561</internalNodes>
<leafValues>
-0.4204545319080353 0.5165745615959168</leafValues></_>
<!-- tree 1 -->
<_>
<internalNodes>
0 -1 131 -67110925 14874979 -142633168 -1338923040
2046713291 -2067933195 1473503712 -789579837</internalNodes>
<leafValues>
-0.3762553930282593 0.4075302779674530</leafValues></_>
<!-- tree 2 -->
<_>
<internalNodes>
0 -1 83 -272814301 -1577073 -1118685 -305156120 -1052289
-1073813756 -538971154 -355523038</internalNodes>
<leafValues>
-0.4253497421741486 0.3728055357933044</leafValues></_>
<!-- tree 3 -->
<_>
<internalNodes>
0 -1 135 -2233 -214486242 -538514758 573747007 -159390971
1994225489 -973738098 -203424005</internalNodes>
<leafValues>
-0.3601998090744019 0.4563256204128265</leafValues></_>
<!-- tree 4 -->
<_>
<internalNodes>
0 -1 115 -261031688 -1330369299 -641860609 1029570301
-1306461192 -1196149518 -1529767778 683139823</internalNodes>
<leafValues>
-0.4034293889999390 0.4160816967487335</leafValues></_>
<!-- tree 5 -->
<_>
<internalNodes>
0 -1 64 -572993608 -34042628 -417865 -111109 -1433365268
-19869715 -1920939864 -1279457063</internalNodes>
<leafValues>
-0.3620899617671967 0.4594142735004425</leafValues></_>
<!-- tree 6 -->
<_>
<internalNodes>
0 -1 36 -626275097 -615256993 1651946018 805366393
2016559730 -430780849 -799868165 -16580645</internalNodes>
<leafValues>
-0.3903816640377045 0.4381459355354309</leafValues></_>
<!-- tree 7 -->
<_>
<internalNodes>
0 -1 93 1354797300 -1090957603 1976418270 -1342502178
-1851873892 -1194637077 -1153521668 -1108399474</internalNodes>
<leafValues>
-0.3591445386409760 0.4624078869819641</leafValues></_>
<!-- tree 8 -->
<_>
<internalNodes>
0 -1 91 68157712 1211368313 -304759523 1063017136 798797750
-275513546 648167355 -1145357350</internalNodes>
<leafValues>
-0.4297670423984528 0.4023293554782867</leafValues></_>
<!-- tree 9 -->
<_>
<internalNodes>
0 -1 107 -546318240 -1628569602 -163577944 -537002306
-545456389 -1325465645 -380446736 -1058473386</internalNodes>
<leafValues>
-0.5727006793022156 0.2995934784412384</leafValues></_></weakClassifiers></_></stages>
<features>
<_>
<rect>
0 0 3 5</rect></_>
<_>
<rect>
0 0 4 2</rect></_>
<_>
<rect>
0 0 6 3</rect></_>
<_>
<rect>
0 1 2 3</rect></_>
<_>
<rect>
0 1 3 3</rect></_>
<_>
<rect>
0 1 3 7</rect></_>
<_>
<rect>
0 4 3 3</rect></_>
<_>
<rect>
0 11 3 4</rect></_>
<_>
<rect>
0 12 8 4</rect></_>
<_>
<rect>
0 14 4 3</rect></_>
<_>
<rect>
1 0 5 3</rect></_>
<_>
<rect>
1 1 2 2</rect></_>
<_>
<rect>
1 3 3 1</rect></_>
<_>
<rect>
1 7 4 4</rect></_>
<_>
<rect>
1 12 2 2</rect></_>
<_>
<rect>
1 13 4 1</rect></_>
<_>
<rect>
1 14 4 3</rect></_>
<_>
<rect>
1 17 3 2</rect></_>
<_>
<rect>
2 0 2 3</rect></_>
<_>
<rect>
2 1 2 2</rect></_>
<_>
<rect>
2 2 4 6</rect></_>
<_>
<rect>
2 3 4 4</rect></_>
<_>
<rect>
2 7 2 1</rect></_>
<_>
<rect>
2 11 2 3</rect></_>
<_>
<rect>
2 17 3 2</rect></_>
<_>
<rect>
3 0 2 2</rect></_>
<_>
<rect>
3 1 7 3</rect></_>
<_>
<rect>
3 7 2 1</rect></_>
<_>
<rect>
3 7 2 4</rect></_>
<_>
<rect>
3 18 2 2</rect></_>
<_>
<rect>
4 0 2 3</rect></_>
<_>
<rect>
4 3 2 1</rect></_>
<_>
<rect>
4 6 2 1</rect></_>
<_>
<rect>
4 6 2 5</rect></_>
<_>
<rect>
4 7 5 2</rect></_>
<_>
<rect>
4 8 4 3</rect></_>
<_>
<rect>
4 18 2 2</rect></_>
<_>
<rect>
5 0 2 2</rect></_>
<_>
<rect>
5 3 4 4</rect></_>
<_>
<rect>
5 6 2 5</rect></_>
<_>
<rect>
5 9 2 2</rect></_>
<_>
<rect>
5 10 2 2</rect></_>
<_>
<rect>
6 3 4 4</rect></_>
<_>
<rect>
6 4 4 3</rect></_>
<_>
<rect>
6 5 2 3</rect></_>
<_>
<rect>
6 5 2 5</rect></_>
<_>
<rect>
6 5 4 3</rect></_>
<_>
<rect>
6 6 4 2</rect></_>
<_>
<rect>
6 6 4 4</rect></_>
<_>
<rect>
6 18 1 2</rect></_>
<_>
<rect>
6 21 2 1</rect></_>
<_>
<rect>
7 0 3 7</rect></_>
<_>
<rect>
7 4 2 3</rect></_>
<_>
<rect>
7 9 5 1</rect></_>
<_>
<rect>
7 21 2 1</rect></_>
<_>
<rect>
8 0 1 4</rect></_>
<_>
<rect>
8 5 2 2</rect></_>
<_>
<rect>
8 5 3 2</rect></_>
<_>
<rect>
8 17 3 1</rect></_>
<_>
<rect>
8 18 1 2</rect></_>
<_>
<rect>
9 0 5 3</rect></_>
<_>
<rect>
9 2 2 6</rect></_>
<_>
<rect>
9 5 1 1</rect></_>
<_>
<rect>
9 11 1 1</rect></_>
<_>
<rect>
9 16 1 1</rect></_>
<_>
<rect>
9 16 2 1</rect></_>
<_>
<rect>
9 17 1 1</rect></_>
<_>
<rect>
9 18 1 1</rect></_>
<_>
<rect>
10 5 1 2</rect></_>
<_>
<rect>
10 5 3 3</rect></_>
<_>
<rect>
10 7 1 5</rect></_>
<_>
<rect>
10 8 1 1</rect></_>
<_>
<rect>
10 9 1 1</rect></_>
<_>
<rect>
10 10 1 1</rect></_>
<_>
<rect>
10 10 1 2</rect></_>
<_>
<rect>
10 14 3 3</rect></_>
<_>
<rect>
10 15 1 1</rect></_>
<_>
<rect>
10 15 2 1</rect></_>
<_>
<rect>
10 16 1 1</rect></_>
<_>
<rect>
10 16 2 1</rect></_>
<_>
<rect>
10 17 1 1</rect></_>
<_>
<rect>
10 21 1 1</rect></_>
<_>
<rect>
11 3 2 2</rect></_>
<_>
<rect>
11 5 1 2</rect></_>
<_>
<rect>
11 5 3 3</rect></_>
<_>
<rect>
11 5 4 6</rect></_>
<_>
<rect>
11 6 1 1</rect></_>
<_>
<rect>
11 7 2 2</rect></_>
<_>
<rect>
11 8 1 2</rect></_>
<_>
<rect>
11 10 1 1</rect></_>
<_>
<rect>
11 10 1 2</rect></_>
<_>
<rect>
11 15 1 1</rect></_>
<_>
<rect>
11 17 1 1</rect></_>
<_>
<rect>
11 18 1 1</rect></_>
<_>
<rect>
12 0 2 2</rect></_>
<_>
<rect>
12 1 2 5</rect></_>
<_>
<rect>
12 2 4 1</rect></_>
<_>
<rect>
12 3 1 3</rect></_>
<_>
<rect>
12 7 3 4</rect></_>
<_>
<rect>
12 10 3 2</rect></_>
<_>
<rect>
12 11 1 1</rect></_>
<_>
<rect>
12 12 3 2</rect></_>
<_>
<rect>
12 14 4 3</rect></_>
<_>
<rect>
12 17 1 1</rect></_>
<_>
<rect>
12 21 2 1</rect></_>
<_>
<rect>
13 6 2 5</rect></_>
<_>
<rect>
13 7 3 5</rect></_>
<_>
<rect>
13 11 3 2</rect></_>
<_>
<rect>
13 17 2 2</rect></_>
<_>
<rect>
13 17 3 2</rect></_>
<_>
<rect>
13 18 1 2</rect></_>
<_>
<rect>
13 18 2 2</rect></_>
<_>
<rect>
14 0 2 2</rect></_>
<_>
<rect>
14 1 1 3</rect></_>
<_>
<rect>
14 2 3 2</rect></_>
<_>
<rect>
14 7 2 1</rect></_>
<_>
<rect>
14 13 2 1</rect></_>
<_>
<rect>
14 13 3 3</rect></_>
<_>
<rect>
14 17 2 2</rect></_>
<_>
<rect>
15 0 2 2</rect></_>
<_>
<rect>
15 0 2 3</rect></_>
<_>
<rect>
15 4 3 2</rect></_>
<_>
<rect>
15 4 3 6</rect></_>
<_>
<rect>
15 6 3 2</rect></_>
<_>
<rect>
15 11 3 4</rect></_>
<_>
<rect>
15 13 3 2</rect></_>
<_>
<rect>
15 17 2 2</rect></_>
<_>
<rect>
15 17 3 2</rect></_>
<_>
<rect>
16 1 2 3</rect></_>
<_>
<rect>
16 3 2 4</rect></_>
<_>
<rect>
16 6 1 1</rect></_>
<_>
<rect>
16 16 2 2</rect></_>
<_>
<rect>
17 1 2 2</rect></_>
<_>
<rect>
17 1 2 5</rect></_>
<_>
<rect>
17 12 2 2</rect></_>
<_>
<rect>
18 0 2 2</rect></_></features></cascade>
</opencv_storage>
Demo里边包括了openCv的代码,可是没有mangager的安装包,假设提示不能使用下载安装对应的apk就能使用:
OpenCv 人脸检測的学习的更多相关文章
- OpenCV人脸检測(完整源代码+思路)
本博文IDE为vs2013 OpenCV2.49 话不多说,先看视频演示(20S演示): 例如以下: https://v.youku.com/v_show/id_XMjYzMzkxMTYyMA==.h ...
- 【从零学习openCV】IOS7下的人脸检測
前言: 人脸检測与识别一直是计算机视觉领域一大热门研究方向,并且也从安全监控等工业级的应用扩展到了手机移动端的app,总之随着人脸识别技术获得突破,其应用前景和市场价值都是不可估量的,眼下在学习ope ...
- Matlab人脸检測方法(Face Parts Detection)具体解释
今天同学让我帮忙制作一个人脸表情识别的样本库,当中主要是对人脸进行裁剪,这里用到了一个相对较新的Matlab人脸检測方法Face Parts Detection.网上百度了一下发现关于Matlab人脸 ...
- 利用opencv中的级联分类器进行人脸检測-opencv学习(1)
OpenCV支持的目标检測的方法是利用样本的Haar特征进行的分类器训练,得到的级联boosted分类器(Cascade Classification).注意,新版本号的C++接口除了Haar特征以外 ...
- 基于QT和OpenCV的人脸检測识别系统(1)
人脸识别分为两大步骤 1.人脸检測 这个是首要实现的.你得实现人脸显示的时候把人脸框出来,当然算法非常多,另一些人眼检測鼻子检測什么的 主要用的是这个 const char *faceCascadeF ...
- Viola-Jones人脸检測
OpenCV中有一个基于树的技术:Haar分类器,它建立了boost筛选式级联. 它能够识别出人脸和其它刚性物体. 对于检測"基本刚性"的物体(脸,汽车,自行车,人体等)这类识别任 ...
- 【OpenCV新手教程之十二】OpenCV边缘检測:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨) ...
- OpenFace库(Tadas Baltrusaitis)中基于Haar Cascade Classifiers进行人脸检測的測试代码
Tadas Baltrusaitis的OpenFace是一个开源的面部行为分析工具.它的源代码能够从 https://github.com/TadasBaltrusaitis/OpenFace 下载. ...
- C++开发人脸性别识别教程(10)——加入图片的人脸检測程序
现在我们的MFC框架已经初具规模,能够读取并显示目录下的图片.在这篇博文中我们将向当中加入人脸检測的程序. 一.人脸检測算法 这里我们使用OpenCv封装的Adaboost方法来进行人脸检測,參见:C ...
随机推荐
- 优动漫PAINT-绘制透明布料教程
原是一篇日语教程,觉得挺不错的,就劳烦会日语的朋友帮忙翻译了,特此分享!希望可以帮助到大家在绘画上的学习!原教程转载优动漫官网. 作者:JaneMere 相关资讯还可以关注www.dongmansof ...
- CDR X6设计师的福利,3折特惠!
最新消息称,即日起CorelDRAW官方为回馈新老用户长期以来的支持,特别推出CorelDRAW X6降价活动.目前CorelDRAW X6售价仅为2399元,照这个价格,CDR 2017 会 ...
- 关于深度残差网络(Deep residual network, ResNet)
题外话: From <白话深度学习与TensorFlow> 深度残差网络: 深度残差网络的设计就是为了克服这种由于网络深度加深而产生的学习效率变低,准确率无法有效提升的问题(也称为网络退化 ...
- Dapper基础知识一
在下刚毕业工作,之前实习有用到Dapper?这几天新项目想用上Dapper,在下比较菜鸟,这块只是个人对Dapper的一种总结. 1,什么是Dapper? Dapper,.NET下的一种ORM ...
- BZOJ 4870: [Shoi2017]组合数问题 矩阵乘法_递推
Code: #include <cstdio> #include <cstring> #include <algorithm> #define setIO(s) f ...
- kali(Ubuntu)右键添加idle打开方式
IDLE可以说是Unix平台下Python的第一个集成开发环境(IDE) 命名行输入idle看idle是否已安装,没有则先安装 安装idle:apt-get install idle 安装完成后,命名 ...
- [NOIP2012提高组]疫情控制
题目:洛谷P1084.codevs1218.Vijos P1783. 题目大意:有一棵n个节点的,根为1的带权树和m支军队.每支军队可以在一个点上停下,那么从1开始就不能经过这个点了.现在有m支军队已 ...
- Hibernate中如何完成持久化类和数据库映射文件
因为最近写项目需要要到,就在这里码码字,方便以后做一个参考,在这里,我通过的是myeclipse的反向工程来配置持久化类和数据的映射文件的. 1.打开myeclipse,打开数据库视图,对应的是Win ...
- ActiveMQ maven
http://outofmemory.cn/java/mq/apache-activemq-demo
- VS2008 集成Lua解释器
1. 登陆官网下载源代码 -> www.lua.org -> get started -> installing 选择系统类型(这里是Windows的,所下面载 luaDist) ...