参考:
http://www.sohu.com/a/206922947_390227
https://zhuanlan.zhihu.com/p/27830489

https://www.jianshu.com/p/0bb00eed9c63

https://www.baidu.com/link?url=CwDMHi72fOR8BzSlKAR0_01oYq-Jn79tNdrWrISguElN1w4Ng9DBZhihxCNjrWUBavktHOALF41rzvar191r4SlbKHO_EgiY_dmSYpDoq5C&wd=&eqid=c0fe574e00063f08000000035d11e9c6

https://www.jianshu.com/p/2a76b7d3126b

https://www.baidu.com/link?url=XI4NojXLflTT49Am0pQmaWXoPfqvBqdB1K8nkt6sFX1LRqsVwDyedyyN9vOH76GXquBBTfW7b2DfzYumTwYjaRBl87APzOD0u_YCeu4zWGW&wd=&eqid=c0fe574e00063f08000000035d11e9c6

https://blog.csdn.net/k284213498/article/details/83474972

嵌入(Embedding)

例如,想用将具有三个等级的输入变量表示为二维数据。使用嵌入层,底层自微分引擎(the underlaying automatic differentiation engines,例如Tensorflow或PyTorch)将具有三个等级的输入数据减少为二维数据。

嵌入式数据

输入数据需要用索引表示。这一点可以通过标签编码轻松实现。这是你的嵌入层的输入。
这里有一个简单的例子,在keras中使用嵌入层,点击链接,查看详情:https://github.com/krishnakalyan3/FastAI_Practice/blob/master/notebooks/RecSys.ipynb

最初,权重是随机初始化的,它们使用随机梯度下降得到优化,从而在二维空间中获得良好的数据表示。可以说,当我们有100个等级时,并且想要在50个维度中获得这个数据的表示时,这是一个非常有用的主意。
示例:
原始数据:

标签数据:

独热编码:

嵌入数据:

2.机器学习中的embedding原理及tensorflow 相关API的理解

embedding 算法主要用于处理稀疏特征,应用于NLP、推荐、广告等领域。所以word2vec 只是embbeding 思想的一个应用,而不是全部。

原文地址:https://gshtime.github.io/2018/06/01/tensorflow-embedding-lookup-sparse/
代码地址:git@github.com:gshtime/tensorflow-api.git

embedding原理

常见的特征降维方法主要有PCA、SVD等。
而embedding的主要目的也是对(稀疏)特征进行降维,它降维的方式可以类比为一个全连接层(没有激活函数),通过 embedding 层的权重矩阵计算来降低维度。
假设:

  • feature_num : 原始特征数
  • embedding_size: embedding之后的特征数
  • [feature_num, embedding_size] 权重矩阵shape
  • [m, feature_num] 输入矩阵shape,m为样本数
  • [m, embedding_size] 输出矩阵shape,m为样本数

从id(索引)找到对应的 One-hot encoding ,然后红色的weight就直接对应了输出节点的值(注意这里没有 activation function),也就是对应的embedding向量。

3.Word Embedding的发展和原理简介
https://www.jianshu.com/p/2a76b7d3126b

可以将Word Embedding理解为一种映射,其过程是:将文本空间中的某个word,通过一定的方法,映射或者说嵌入(embedding)到另一个数值向量空间(之所以称之为embedding,是因为这种表示方法往往伴随着一种降维的意思。

1.2 Word Embedding的输入
Word Embedding的输入是原始文本中的一组不重叠的词汇,假设有句子:apple on a apple tree。那么为了便于处理,我们可以将这些词汇放置到一个dictionary里,例如:["apple", "on", "a", "tree"],这个dictionary就可以看作是Word Embedding的一个输入。

1.3 Word Embedding的输出
Word Embedding的输出就是每个word的向量表示。对于上文中的原始输入,假设使用最简单的one hot编码方式,那么每个word都对应了一种数值表示。例如,apple对应的vector就是[1, 0, 0, 0],a对应的vector就是[0, 0, 1, 0],各种机器学习应用可以基于这种word的数值表示来构建各自的模型。当然,这是一种最简单的映射方法,但却足以阐述Word Embedding的意义。下文将介绍常见的Word Embedding的方法和优缺点。

2 Word Embedding的类型
Word Embedding也是有流派的,主流有以下两种:

基于频率的Word Embedding(Frequency based embedding)
基于预测的Word Embedding(Prediction based embedding)

下面分别介绍之。
2.1 基于频率的Word Embedding
基于频率的Word Embedding又可细分为如下几种:

Count Vector
TF-IDF Vector
Co-Occurence Vector

其本质都是基于one-hot表示法的,以频率为主旨的加权方法改进。

代码实现:
https://www.baidu.com/link?url=XI4NojXLflTT49Am0pQmaWXoPfqvBqdB1K8nkt6sFX1LRqsVwDyedyyN9vOH76GXquBBTfW7b2DfzYumTwYjaRBl87APzOD0u_YCeu4zWGW&wd=&eqid=c0fe574e00063f08000000035d11e9c6

Embeding如何理解?的更多相关文章

  1. 理解CSS视觉格式化

    前面的话   CSS视觉格式化这个词可能比较陌生,但说起盒模型可能就恍然大悟了.实际上,盒模型只是CSS视觉格式化的一部分.视觉格式化分为块级和行内两种处理方式.理解视觉格式化,可以确定得到的效果是应 ...

  2. 彻底理解AC多模式匹配算法

    (本文尤其适合遍览网上的讲解而仍百思不得姐的同学) 一.原理 AC自动机首先将模式组记录为Trie字典树的形式,以节点表示不同状态,边上标以字母表中的字符,表示状态的转移.根节点状态记为0状态,表示起 ...

  3. 理解加密算法(三)——创建CA机构,签发证书并开始TLS通信

    接理解加密算法(一)--加密算法分类.理解加密算法(二)--TLS/SSL 1 不安全的TCP通信 普通的TCP通信数据是明文传输的,所以存在数据泄露和被篡改的风险,我们可以写一段测试代码试验一下. ...

  4. node.js学习(三)简单的node程序&&模块简单使用&&commonJS规范&&深入理解模块原理

    一.一个简单的node程序 1.新建一个txt文件 2.修改后缀 修改之后会弹出这个,点击"是" 3.运行test.js 源文件 使用node.js运行之后的. 如果该路径下没有该 ...

  5. 如何一步一步用DDD设计一个电商网站(一)—— 先理解核心概念

    一.前言     DDD(领域驱动设计)的一些介绍网上资料很多,这里就不继续描述了.自己使用领域驱动设计摸滚打爬也有2年多的时间,出于对知识的总结和分享,也是对自我理解的一个公开检验,介于博客园这个平 ...

  6. 学习AOP之透过Spring的Ioc理解Advisor

    花了几天时间来学习Spring,突然明白一个问题,就是看书不能让人理解Spring,一方面要结合使用场景,另一方面要阅读源代码,这种方式理解起来事半功倍.那看书有什么用呢?主要还是扩展视野,毕竟书是别 ...

  7. ThreadLocal简单理解

    在java开源项目的代码中看到一个类里ThreadLocal的属性: private static ThreadLocal<Boolean> clientMode = new Thread ...

  8. JS核心系列:理解 new 的运行机制

    和其他高级语言一样 javascript 中也有 new 运算符,我们知道 new 运算符是用来实例化一个类,从而在内存中分配一个实例对象. 但在 javascript 中,万物皆对象,为什么还要通过 ...

  9. 深入理解JS 执行细节

    javascript从定义到执行,JS引擎在实现层做了很多初始化工作,因此在学习JS引擎工作机制之前,我们需要引入几个相关的概念:执行环境栈.全局对象.执行环境.变量对象.活动对象.作用域和作用域链等 ...

随机推荐

  1. 面试官问你如何解决web高并发这样回答就好了

    所谓高并发,就是同一时间有很多流量(通常指用户)访问程序的接口.页面及其他资源,解决高并发就是当流量峰值到来时保证程序的稳定性. 我们一般用QPS(每秒查询数,又叫每秒请求数)来衡量程序的综合性能,数 ...

  2. 提高生产力:开源Java工具包Jodd(Java的”瑞士军刀”)

    官方网站:http://jodd.org/ 下载地址:http://jodd.org/download/index.html Jodd=tools + ioc + mvc + db + aop + t ...

  3. android下xml放哪儿?

    1.用Project->Deployment,打开发布文件窗口,增加要发布的文件.然后设置文件发布的位置Remote Path,填写为assets\internal\ 2.代码 varp: st ...

  4. 【codeforces 350C】Bombs

    [链接] 我是链接,点我呀:) [题意] [题解] 会发现在x轴以及y轴上的炸弹,能用较少的操作数除掉. 而其他的点,会发现操作数都是一样的. 那么先把x,y轴上的点都除掉. 其他点. 我们优先沿着横 ...

  5. Mysql学习总结(12)——21分钟Mysql入门教程

    21分钟 MySQL 入门教程 目录 一.MySQL的相关概念介绍 二.Windows下MySQL的配置 配置步骤 MySQL服务的启动.停止与卸载 三.MySQL脚本的基本组成 四.MySQL中的数 ...

  6. 图论·Dijkstra·HDU2066

    这道题刚做的时候用的Floyd,果断超时,于是去学了Dijkstra,主函数和Floyd很像. 原理: 从起点开始,找最近的又未标记的点,记录距离,标记此点,再找此点附近相连的未标记的点,记录下距离, ...

  7. COGS——C1176. [郑州101中学] 月考

    http://cogs.pro/cogs/problem/problem.php?pid=1176 [题目描述] 在上次的月考中Bugall同学违反了考场纪律还吃了处分,更可气的是在第二天的校会时 间 ...

  8. jcaptcha进阶

    1.改动CaptchaServiceSingleton类.使用带參构造方法来创建DefaultManageableImageCaptchaService对象. watermark/2/text/aHR ...

  9. 2016.04.06,英语,《Vocabulary Builder》Unit 10

    put, from the Latin verb putare, meaning 'to think, consider, or believe'. reputation: [ˌrepju'teɪʃn ...

  10. Google的TensorFlow,微软CNTK, Amazon 的MxNet,Facebook 的Caffe2, PyTorch,国内百度的PaddlePaddle

    深度学习框架竞争很激烈,而且看上去都是业界巨头在玩. 老师木:是的.一个深度学习框架一旦像Hadoop那样成为事实工业标准,就占据了人工智能各种关键应用的入口,对各类垂直应用,基于私有部署的技术服务, ...