FFT模板,原理不难,优质讲解很多,但证明很难看太不懂

这模板题在bzoj竟然是土豪题,服了

 #include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define dd double
#define ll long long
#define N (1<<21)+10
using namespace std; int n,m,ma;
int r[N];
dd const pi=acos(-);
struct cp{
dd x,y;
cp(dd a,dd b):x(a),y(b){}
cp(){}
cp operator+(const cp &a){return cp(x+a.x,y+a.y);}
cp operator-(const cp &a){return cp(x-a.x,y-a.y);}
cp operator*(const cp &a){return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
}a[N],b[N],c[N];
void FFT(cp s[],int len,int type)
{
for(int i=;i<len;i++)
if(i<r[i]) swap(s[i],s[r[i]]);
for(int k=;k<=len;k<<=)
{
cp wn(cos(*pi*type/k),sin(*pi*type/k));
for(int i=;i<len;i+=k)
{
cp t,w(,);
for(int j=;j<(k>>);j++,w=w*wn)
{
t=w*s[i+j+(k>>)];
s[i+j+(k>>)]=s[i+j]-t;
s[i+j]=s[i+j]+t;
}
}
}
}
void FFT_main(cp A[],cp B[],cp C[],int len)
{
FFT(A,len,);FFT(B,len,);
for(int i=;i<len;i++) C[i]=A[i]*B[i];
FFT(C,len,-);
} int gc()
{
int rett=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){rett=(rett<<)+(rett<<)+c-'';c=getchar();}
return rett*fh;
} int main()
{
n=gc(),m=gc(),ma=,n++,m++;
for(int i=;i<n;i++) a[i].x=1.0*gc();
for(int i=;i<m;i++) b[i].x=1.0*gc();
while((<<ma)<n+m){ma++;}
for(int i=;i<(<<ma);i++)
r[i]=(r[i>>]>>)|((i&)<<(ma-));
FFT_main(a,b,c,<<ma);
for(int i=;i<n+m-;i++) printf("%d ",(int)(c[i].x/(<<ma)+0.1));
return ;
}

模板 FFT 快速傅里叶变换的更多相关文章

  1. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  2. FFT 快速傅里叶变换 学习笔记

    FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...

  3. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  4. 模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)

    先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #incl ...

  5. FFT —— 快速傅里叶变换

    问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...

  6. [C++] 频谱图中 FFT快速傅里叶变换C++实现

    在项目中,需要画波形频谱图,因此进行查找,不是很懂相关知识,下列代码主要是针对这篇文章. http://blog.csdn.net/xcgspring/article/details/4749075 ...

  7. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  8. 模板:快速傅里叶变换(FFT)

    参考:http://blog.csdn.net/f_zyj/article/details/76037583 如果公式炸了请去我的csdn博客:http://blog.csdn.net/luyouqi ...

  9. FFT(快速傅里叶变换) 模板

    洛谷 P3803 [模板]多项式乘法(FFT)传送门 存个板子,完全弄懂之后找机会再写个详解. #include<cstdio> #include<cmath> struct ...

随机推荐

  1. php程序员需要撑握的知识点

    1. 基本知识点 HTTP协议中几个状态码的含义:1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状态代码. 代码   说明 100   (继续) 请求者应当继续提出请求. 服务器返回此代码 ...

  2. GCJ 2008 Round 1A Minimum Scalar Product( 水 )

    链接:传送门 题意:给两个向量 v1 = { x1 , x2 , x3 , x4 .... } , v2 = { y1 , y2 , y3 , y4 ...... } 允许任意交换 v1 和 v2 各 ...

  3. [luogu1600 noip2016] 天天爱跑步 (树上差分)

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵 ...

  4. 解决SpringBoot+JPA中使用set方法时自动更新数据库问题

    项目进行了三分之二了,突然出现一个很诡异的bug,数据库存储的用户表中密码信息总是自动消失一部分,头疼了几天后突然想起同事有个对低权限用户查询的用户信息向前台传送时会把密码设成null后再传输,心想是 ...

  5. Spring 静态工厂实例

    直接上代码,看注释. 创建实体类: package com.spring.classs; public class Test {    private String name;    private ...

  6. 使用Word2016直接发布博客

    使用Word2016直接发布博客

  7. elasticsearch 分页查询实现方案

    1. from+size 实现分页 from表示从第几行开始,size表示查询多少条文档.from默认为0,size默认为10, 注意:size的大小不能超过index.max_result_wind ...

  8. ExtJs之Ext.XTemplate:数组填充,访问父对象

    <!DOCTYPE html> <html> <head> <title>ExtJs</title> <meta http-equiv ...

  9. 使用 from import方法导入Python模块

    比如我们导入一个数学计算的模块 math: >>> import math>>> print math<module 'math' (built-in)> ...

  10. [HTML 5] More about ARIA Relationships