这道题和负载平衡问题是同一道题, 如果 $n <= 100$ 的话是可以用最小费用流来求解的。
但是题中 $n$ 最大可达到 $10^6$, 这就需要我们进行一些性质分析与推导。
首先, 我们设每个·人手里最终金币数为 $C$
设 $X_{i}$ 为第 $i$个人给第 $i+1$ 个人的金币数目, 这个数目可以为负(第$i + 1$ 个人向左给了第$i$ 个人$|X_{i}|$个。
则我们不难发现:
1. $A_{2}+X_{1}-X_{2}=C$
2. $A_{3}+X_{2}-X_{3}=C$
3. $A_{4}+X_{3}-X_{4}=C$
4. ...
5. $A_{i}+X_{i-1}-X_{i}=C$
而这道题要求的其实就是$min|X_{1}| + |X_{2}| + |X_{3}| + |X_{4}| +... |X_{n}|$
那么,我们可将上面的等式进行变形,得:
1. $X_{1} = X_{1}$
2. $X_{2} =A_{2}-C+X_{1}$
3. $X_{3} =A_{2} + A_{3}-2*C+X_{1}$
4. $X_{4} =A_{2} + A_{3} +A_{4}-3*C+X_{1}$
5. $X_{5} =A_{2}+A_{3}+A_{4}+A_{5}-4*C+X_{1}$
此时,相信聪明的读者们不难发现规律:
$X_{i} = \sum\limits_{k=2}^i-(i-1)*C+X_{1}$ 即 $X_{i} = \sum\limits_{k=2}^i-(i-1)*C-(-X_{1})$
我们可以把$X_{1}$抽象成数轴上的一个点, 我们设$g_{i}= \sum\limits_{k=2}^i-(i-1)*C$,那么我们希望 $X_{1}$ 到所有 $g_{i}$ 的距离和最短,这个 $X_{i}$ 一定是 $g_{i}$中的中位数,于是我们将所有的 $g_{i}$ 排序,取中位数作为 $X_{1}$ 即可,我们也就能顺便推出所有的 $X_{i}$ ,最后加和即可,总时间复杂度为 $O(nlogn)$

uva 11300 Spreading the Wealth_数学推倒 + 思维的更多相关文章

  1. 数学/思维 UVA 11300 Spreading the Wealth

    题目传送门 /* 假设x1为1号给n号的金币数(逆时针),下面类似 a[1] - x1 + x2 = m(平均数) 得x2 = x1 + m - a[1] = x1 - c1; //规定c1 = a[ ...

  2. UVA.11300 Spreading the Wealth (思维题 中位数模型)

    UVA.11300 Spreading the Wealth (思维题) 题意分析 现给出n个人,每个人手中有a[i]个数的金币,每个人能给其左右相邻的人金币,现在要求你安排传递金币的方案,使得每个人 ...

  3. UVa 11300 Spreading the Wealth(有钱同使)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: "Times New ...

  4. uva 11300 - Spreading the Wealth(数论)

    题目链接:uva 11300 - Spreading the Wealth 题目大意:有n个人坐在圆桌旁,每个人有一定的金币,金币的总数可以被n整除,现在每个人可以给左右的人一些金币,使得每个人手上的 ...

  5. UVA - 11300 Spreading the Wealth(数学题)

    UVA - 11300 Spreading the Wealth [题目描述] 圆桌旁边坐着n个人,每个人有一定数量的金币,金币的总数能被n整除.每个人可以给他左右相邻的人一些金币,最终使得每个人的金 ...

  6. UVA 11300 Spreading the Wealth (数学推导 中位数)

    Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They ...

  7. 【思维】UVA 11300 Spreading the Wealth

    题目大意 vjudge链接 有n个人围圆桌而坐,每个人有Ai个金币,每个人可以给左右相邻的人一些金币. 若使得最终所有人金币数相等,求最小金币转移数. 数据范围 n<1000001 样例输入 3 ...

  8. Uva 11300 Spreading the Wealth(递推,中位数)

    Spreading the Wealth Problem A Communist regime is trying to redistribute wealth in a village. They ...

  9. Math - Uva 11300 Spreading the Wealth

    Spreading the Wealth Problem's Link ---------------------------------------------------------------- ...

随机推荐

  1. Tarjan算法 (强联通分量 割点 割边)

    变量解释: low 指当前节点在同一强连通分量(或环)能回溯到的dfn最小的节点 dfn 指当前节点是第几个被搜到的节点(时间戳) sta 栈 vis 是否在栈中 ans 指强连通分量的数量 top ...

  2. k8s的概念

    Kubernetes(简称为 K8s),最初由 Google 的工程师开发和设计.Kubernetes 是用于自动部署.扩展和管理容器化应用程序的开源系统,它旨在提供跨主机集群的自动部署.扩展以及运行 ...

  3. 轻量级Java EE开发框架设计系统应用架构

    首先来说一下Java EE 概述 其中常说的三大框架即是:ssh Spring:功能强大的组件粘合济,能够将你的所有的java功能模块用配置文件的方式组合起来(还让你感觉不到spring的存在)成为一 ...

  4. PHP学习总结(6)——PHP入门篇之PHP语句结束符

    PHP语句结束符 有的小伙伴们是不是已经注意在每一条PHP代码行结尾处都会有一个分号:.对的,这点注意,在PHP编程中需要在每条语句的末尾加入分号:.但要注意,分号:一定在半角状态下输入噢.

  5. HDU2147 kiki's game

    /* HDU2147 kiki's game 博弈论 巴什博奕 http://acm.hdu.edu.cn/showproblem.php?pid=2147 题意:在一个n×m的棋盘上,初始棋子放在右 ...

  6. MyBatis-Spring-SqlSessionFactoryBean(转)

    SqlSessionFactoryBean 在基本的 MyBatis 中,session 工厂可以使用 SqlSessionFactoryBuilder 来创建.而在 MyBatis-Spring 中 ...

  7. ibatis的批处理

    (1)spring模式:尽管spring已经配置了事务,但以下代码中还是要设置事务,不然batch不会起作用;另外这里虽然设了一下事务处理,但对全局事务并不会造成影响;注:不启用事务将建立多次连接,这 ...

  8. 数据库-mongodb-常用命令

    展示当前集合列表 1 show dbs 查看查询命令 1 db.stu.find().explain(); 结果中的 "cursor":"BasicCursor" ...

  9. POJ 1320

    作弊了--!该题可以通过因式分解得到一个佩尔方程....要不是学着这章,估计想不到.. 得到x1,y1后,就直接代入递推式递推了 x[n]=x[n-1]*x[1]+d*y[n-1]*y[1] y[n] ...

  10. R语言的帮助使用和图形功能简单介绍

    R语言的帮助使用和图形功能简单介绍 R语言帮助,在Windows桌面下,有很多种.最长使用的是在命令行下help() > help.start() 会在浏览器中,打开帮助的主页 watermar ...