Spark源代码阅读笔记之DiskStore

BlockManager底层通过BlockStore来对数据进行实际的存储。BlockStore是一个抽象类,有三种实现:DiskStore(磁盘级别的持久化)、MemoryStore(内存级别的持久化)和TachyonStore(Tachyon内存分布式文件系统级别的持久化)。

DiskStore通过DiskBlockManager来实现Block和相应磁盘文件的映射关系,从而将Block存储到磁盘的文件里。DiskBlockManager依据YARN_LOCAL_DIRSLOCAL_DIRS(yarn模式),SPARK_LOCAL_DIRSspark.local.dir(其它模式,默认值System.getProperty(“java.io.tmpdir“))配置的本地根文件夹(可能有多个,以逗号分隔)来生成DiskStore存放Block的根文件夹(与配置的根文件夹相应,也有可能有多个):…/blockmgr-UUID.randomUUID.toString(yarn模式)或…/spark-UUID.randomUUID.toString/blockmgr-UUID.randomUUID.toString(其它模式)。

同一时候DiskBlockManager会为每一个根文件夹生成conf.getInt(“spark.diskStore.subDirectories“, 64)个子文件夹用来存放Block相应的文件。每一个Block会依据它的name哈希到相应的子文件夹,然后以Block的name为文件名称来生成文件存储。

Creates and maintains the logical mapping between logical blocks and physical on-disk locations. By default, one block is mapped to one file with a name given by its BlockId. However, it is also possible to have a block map to only a segment of a file, by calling mapBlockToFileSegment().

Block files are hashed among the directories listed in spark.local.dir (or in SPARK_LOCAL_DIRS, if it’s set).

DiskBlockManager属性

  • blockManager:BlockManager

  • subDirsPerLocalDir:Int = blockManager.conf.getInt(“spark.diskStore.subDirectories“, 64)

    每一个本地根文件夹生成子文件夹的个数,生成子文件夹是为了避免生成过多的索引节点

    Create one local directory for each path mentioned in spark.local.dir; then, inside this directory, create multiple subdirectories that we will hash files into, in order to avoid having really large inodes at the top level.

  • localDirs:Array[File]

    存放Block相应的File的本地根文件夹,依据依据YARN_LOCAL_DIRSLOCAL_DIRS(yarn模式), SPARK_LOCAL_DIRSspark.local.dir(其它模式。默认值System.getProperty(“java.io.tmpdir”))配置生成

  • subDirs:Array[File](localDirs.lenght)(subDirsPerLocalDir)

    存放全部子文件夹的二维数组

DiskBlockManager方法

  • getFile(filename: String): File

    依据文件名称,取得文件。该方法先将filename哈希到相应的子文件夹(subDirs[hash % localDirs.length][(hash / localDirs.length) % subDirsPerLocalDir])。然后推断子文件夹是否存在,若不存在则生成
/** Looks up a file by hashing it into one of our local subdirectories. */
def getFile(filename: String): File = {
// Figure out which local directory it hashes to, and which subdirectory in that
val hash = Utils.nonNegativeHash(filename)
val dirId = hash % localDirs.length
val subDirId = (hash / localDirs.length) % subDirsPerLocalDir // Create the subdirectory if it doesn't already exist
var subDir = subDirs(dirId)(subDirId)
if (subDir == null) {
subDir = subDirs(dirId).synchronized {
val old = subDirs(dirId)(subDirId)
if (old != null) {
old
} else {
val newDir = new File(localDirs(dirId), "%02x".format(subDirId))
if (!newDir.exists() && !newDir.mkdir()) {
throw new IOException(s"Failed to create local dir in $newDir.")
}
subDirs(dirId)(subDirId) = newDir
newDir
}
}
} new File(subDir, filename)
}
  • getFile(blockId: BlockId): File = getFile(blockId.name)

    依据BlockId取得相应的File

  • containsBlock(blockId: BlockId): Boolean = getFile(blockId.name).exists()

    推断BlockId是否有存储在该本地磁盘

  • getAllFiles(): Seq[File]

    取得存储的全部的文件

    /** List all the files currently stored on disk by the disk manager. */
    def getAllFiles(): Seq[File] = {
    // Get all the files inside the array of array of directories
    subDirs.flatten.filter(_ != null).flatMap { dir =>
    val files = dir.listFiles()
    if (files != null) files else Seq.empty
    }
    }
  • getAllBlocks(): Seq[BlockId] = getAllFiles().map(f => BlockId(f.getName))

    取得存储的全部Block的BlockId

  • createTempLocalBlock(): (TempLocalBlockId, File)

    创建本地暂时文件

  /** Produces a unique block id and File suitable for storing local intermediate results. */
def createTempLocalBlock(): (TempLocalBlockId, File) = {
var blockId = new TempLocalBlockId(UUID.randomUUID())
while (getFile(blockId).exists()) {
blockId = new TempLocalBlockId(UUID.randomUUID())
}
(blockId, getFile(blockId))
}
  • createTempShuffleBlock(): (TempShuffleBlockId, File)

    创建sort shuffle使用的暂时文件

    Produces a unique block id and File suitable for storing shuffled intermediate results. “

def createTempShuffleBlock(): (TempShuffleBlockId, File) = {
var blockId = new TempShuffleBlockId(UUID.randomUUID())
while (getFile(blockId).exists()) {
blockId = new TempShuffleBlockId(UUID.randomUUID())
}
(blockId, getFile(blockId))
}

**DiskStore**属性

  • blockManager: BlockManager

  • diskManager: DiskBlockManager

  • minMemoryMapBytes:Long= blockManager.conf.getLong(

    spark.storage.memoryMapThreshold“, 2 * 1024L * 1024L)

    对文件进行内存映射的阈值,即当文件大于该值时getBytes方法对文件进行内存映射,而不是直接将该文件的内容读取到字节缓存区。

DiskStore方法

  • def putBytes(blockId: BlockId, _bytes: ByteBuffer, level: StorageLevel): PutResult

    将BlockId相应的字节缓存存储到磁盘
override def putBytes(blockId: BlockId, _bytes: ByteBuffer, level: StorageLevel): PutResult = {
// So that we do not modify the input offsets !
// duplicate does not copy buffer, so inexpensive
val bytes = _bytes.duplicate()
logDebug(s"Attempting to put block $blockId")
val startTime = System.currentTimeMillis
val file = diskManager.getFile(blockId)
val channel = new FileOutputStream(file).getChannel
while (bytes.remaining > 0) {
channel.write(bytes)
}
channel.close()
val finishTime = System.currentTimeMillis
logDebug("Block %s stored as %s file on disk in %d ms".format(
file.getName, Utils.bytesToString(bytes.limit), finishTime - startTime))
PutResult(bytes.limit(), Right(bytes.duplicate()))
}
  • putIterator(blockId: BlockId, values: Iterator[Any],level: StorageLevel,returnValues: Boolean): PutResult

    将BlockId相应的Iterator数据存储到磁盘,该方法先将Iterator序列化,然后存储到相应的文件。
override def putIterator(
blockId: BlockId,
values: Iterator[Any],
level: StorageLevel,
returnValues: Boolean): PutResult = { logDebug(s"Attempting to write values for block $blockId")
val startTime = System.currentTimeMillis
val file = diskManager.getFile(blockId)
val outputStream = new FileOutputStream(file)
try {
try {
blockManager.dataSerializeStream(blockId, outputStream, values)
} finally {
// Close outputStream here because it should be closed before file is deleted.
outputStream.close()
}
} catch {
case e: Throwable =>
if (file.exists()) {
file.delete()
}
throw e
} val length = file.length val timeTaken = System.currentTimeMillis - startTime
logDebug("Block %s stored as %s file on disk in %d ms".format(
file.getName, Utils.bytesToString(length), timeTaken)) if (returnValues) {
// Return a byte buffer for the contents of the file
val buffer = getBytes(blockId).get
PutResult(length, Right(buffer))
} else {
PutResult(length, null)
}
}
  • putArray(blockId: BlockId,values: Array[Any],level: StorageLevel,returnValues: Boolean): PutResult

    将BlockId相应的Array数据存储到磁盘,该方法先将Array序列化,然后存储到相应的文件。
override def putArray(
blockId: BlockId,
values: Array[Any],
level: StorageLevel,
returnValues: Boolean): PutResult = {
putIterator(blockId, values.toIterator, level, returnValues)
}
  • getBytes(file: File, offset: Long, length: Long): Option[ByteBuffer]

    底层方法,读取文件里偏移为offset。长度为length的内容。该方法会推断length是否大于minMemoryMapBytes。若大于。则做内存映射,否则直接读取到字节缓存中。
private def getBytes(file: File, offset: Long, length: Long): Option[ByteBuffer] = {
val channel = new RandomAccessFile(file, "r").getChannel try {
// For small files, directly read rather than memory map
if (length < minMemoryMapBytes) {
val buf = ByteBuffer.allocate(length.toInt)
channel.position(offset)
while (buf.remaining() != 0) {
if (channel.read(buf) == -1) {
throw new IOException("Reached EOF before filling buffer\n" +
s"offset=$offset\nfile=${file.getAbsolutePath}\nbuf.remaining=${buf.remaining}")
}
}
buf.flip()
Some(buf)
} else {
Some(channel.map(MapMode.READ_ONLY, offset, length))
}
} finally {
channel.close()
}
}
  • getBytes(blockId: BlockId): Option[ByteBuffer]

    读取存储在磁盘中与BlockId相应的内容。
override def getBytes(blockId: BlockId): Option[ByteBuffer] = {
val file = diskManager.getFile(blockId.name)
getBytes(file, 0, file.length)
}
  • getBytes(segment: FileSegment): Option[ByteBuffer] = getBytes(segment.file, segment.offset, segment.length)

    依据FileSegment读取内容,当中 FileSegment存放文件和要读取数据的偏移和大小:FileSegment(val file: File, val offset: Long, val length: Long)

  • getValues(blockId: BlockId): Option[Iterator[Any]]

    读取BlockId相应的内容,并反序列化为Iterator。

override def getValues(blockId: BlockId): Option[Iterator[Any]] = {
getBytes(blockId).map(buffer => blockManager.dataDeserialize(blockId, buffer))
}
  • getValues(blockId: BlockId, serializer: Serializer): Option[Iterator[Any]]

    读取BlockId相应的内容。并依据自己定义的Serializer反序列化为Iterator。
/**
- A version of getValues that allows a custom serializer. This is used as part of the
- shuffle short-circuit code.
*/
def getValues(blockId: BlockId, serializer: Serializer): Option[Iterator[Any]] = {
// TODO: Should bypass getBytes and use a stream based implementation, so that
// we won't use a lot of memory during e.g. external sort merge.
getBytes(blockId).map(bytes => blockManager.dataDeserialize(blockId, bytes, serializer))
}
  • getSize(blockId: BlockId): Long = diskManager.getFile(blockId.name).length

    得到存储在该本地磁盘的BlockId相应Block的大小。

  • remove(blockId: BlockId): Boolean

    删除存储的BlockId相应的Block。

  override def remove(blockId: BlockId): Boolean = {
val file = diskManager.getFile(blockId.name)
// If consolidation mode is used With HashShuffleMananger, the physical filename for the block
// is different from blockId.name. So the file returns here will not be exist, thus we avoid to
// delete the whole consolidated file by mistake.
if (file.exists()) {
file.delete()
} else {
false
}
}
  • contains(blockId: BlockId): Boolean

    推断是否存储BlockId相应的Block。
override def contains(blockId: BlockId): Boolean = {
val file = diskManager.getFile(blockId.name)
file.exists()
}

Spark源代码阅读笔记之DiskStore的更多相关文章

  1. Spark源代码阅读笔记之MetadataCleaner

    MetadataCleaner执行定时任务周期性的清理元数据(metadata),有6种类型的元数据:MAP_OUTPUT_TRACKER.executor跟踪各个map任务输出的存储位置的数据,依据 ...

  2. Mongodb源代码阅读笔记:Journal机制

    Mongodb源代码阅读笔记:Journal机制 Mongodb源代码阅读笔记:Journal机制 涉及的文件 一些说明 PREPLOGBUFFER WRITETOJOURNAL WRITETODAT ...

  3. CI框架源代码阅读笔记5 基准測试 BenchMark.php

    上一篇博客(CI框架源代码阅读笔记4 引导文件CodeIgniter.php)中.我们已经看到:CI中核心流程的核心功能都是由不同的组件来完毕的.这些组件类似于一个一个单独的模块,不同的模块完毕不同的 ...

  4. CI框架源代码阅读笔记3 全局函数Common.php

    从本篇開始.将深入CI框架的内部.一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说.全局函数具有最高的载入优先权.因此大多数的框架中BootStrap ...

  5. CI框架源代码阅读笔记2 一切的入口 index.php

    上一节(CI框架源代码阅读笔记1 - 环境准备.基本术语和框架流程)中,我们提到了CI框架的基本流程.这里再次贴出流程图.以备參考: 作为CI框架的入口文件.源代码阅读,自然由此開始. 在源代码阅读的 ...

  6. [Apache Spark源代码阅读]天堂之门——SparkContext解析

    略微了解Spark源代码的人应该都知道SparkContext,作为整个Project的程序入口,其重要性不言而喻,很多大牛也在源代码分析的文章中对其做了非常多相关的深入分析和解读.这里,结合自己前段 ...

  7. Java Jdk1.8 HashMap源代码阅读笔记二

    三.源代码阅读 3.元素包括containsKey(Object key) /** * Returns <tt>true</tt> if this map contains a ...

  8. Apache Spark源码走读之1 -- Spark论文阅读笔记

    欢迎转载,转载请注明出处,徽沪一郎. 楔子 源码阅读是一件非常容易的事,也是一件非常难的事.容易的是代码就在那里,一打开就可以看到.难的是要通过代码明白作者当初为什么要这样设计,设计之初要解决的主要问 ...

  9. ruby2.2.2 源代码阅读笔记

    这是win32下的结构 从ruby_setup开始阅读 Ruby对象内存结构 RVALUE是一个union,内含ruby所有结构体(RBasic RObject RClass RFloat RStri ...

随机推荐

  1. vue 刷新当前页面的方式

    1.使用window.location.href window.location.replace() window.location.reload() 会出现空白,体验不是很好 2.先进入一个空路由, ...

  2. 从头认识java-17.4 具体解释同步(3)-对象锁

    这一章节我们接着上一章节的问题,给出一个解决方式:对象锁. 1.什么是对象锁? 对象锁是指Java为临界区synchronized(Object)语句指定的对象进行加锁,对象锁是独占排他锁. 2.什么 ...

  3. [1,2,3].forEach(alert);这样的写法有什么利和弊吗?

    以下这个问题遇到了之后.问了太阳神,以下是太阳神的解答: [1,2,3].forEach(alert);这样的写法有什么利和弊吗? 首先forEach使用方法非常easy降低代码量, 可是也有非常多地 ...

  4. C# 文件转byte数组,byte数组再转换文件

    using System;using System.Collections.Generic;using System.ComponentModel;using System.Data;using Sy ...

  5. 原生js大总结四

    031.数组常用的一些方法   1.push: 在数组最后添加一个或者多个元素,返回添加后数组的长度   2.pop: 从数组最后取出一个元素,返回的是数组的最后一个元素(取出的元素)   3.uns ...

  6. Java对ad操作

    转载:http://blog.csdn.net/binyao02123202/article/details/18697953

  7. 洛谷——P1046 陶陶摘苹果

    https://www.luogu.org/problem/show?pid=1046 题目描述 陶陶家的院子里有一棵苹果树,每到秋天树上就会结出10个苹果.苹果成熟的时候,陶陶就会跑去摘苹果.陶陶有 ...

  8. 启动Tomcat,startup.bat一闪而过的解决办法

    1.打开命令行:win+R --> cmd2.将解压后的tomcat\bin\startup.bat文件拖到控制台窗口中,回车. 这样就可以看到错误信息的提示,根据提示修改即可.

  9. Android底层开发之Linux输入子系统要不要推断系统休眠状态上报键值

    Android底层开发之Linux输入子系统要不要推断系统休眠状态上报键值 题外话:一个问题研究到最后,那边记录文档的前半部分基本上都是没用的,甚至是错误的. 重点在最后,前边不过一些假想猜測. ht ...

  10. js进阶 13 jquery动画函数有哪些

    js进阶 13 jquery动画函数有哪些 一.总结 一句话总结: 二.jquery动画函数有哪些 原生JavaScript编写动画效果代码比较复杂,而且还需要考虑兼容性.通过jQuery,我们使用简 ...