[TJOI2015]弦论(后缀数组or后缀自动机)
解法一:后缀数组
听说后缀数组解第k小本质不同的子串是一个经典问题。
把后缀排好序后第i个串的本质不同的串的贡献就是\(n-sa[i]+1-LCP(i,i-1)\)然后我们累加这个贡献,看到哪一个串的时候,这个贡献的和大于等于k,然后答案就在这个串里了,然后枚举就行了。
那么第k小子串该怎么办?
我们考虑二分答案,我们按字典序大小二分一个子串(具体就是二分第k小的本质不同子串,因为这个串可以\(O(n)\)求),然后看看比这个串小的串有多少个?然后改变上下界就行了。
那么我们如何求出比一个串小的串有多少个?
设我们我们二分的子串是后缀数组排名为x的后缀的前缀,长度为len。贡献就是\(\sum_{i=1}^{x-1}n-sa[i]+1+\sum_{i=x}^{n}min(LCP(x,i),len)\)
然后这个题就解决了。
代码很丑
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=501000;
int c[N],x[N],sa[N],y[N],height[N],rk[N],n,m,t,k,tmp,ans;
char s[N];
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
void get_sa(){
for(int i=1;i<=n;i++)c[x[i]=s[i]]++;
for(int i=1;i<=m;i++)c[i]+=c[i-1];
for(int i=n;i>=1;i--)sa[c[x[i]]--]=i;
for(int k=1;k<=n;k<<=1){
int num=0;
for(int i=n-k+1;i<=n;i++)y[++num]=i;
for(int i=1;i<=n;i++)if(sa[i]>k)y[++num]=sa[i]-k;
for(int i=1;i<=m;i++)c[i]=0;
for(int i=1;i<=n;i++)c[x[i]]++;
for(int i=1;i<=m;i++)c[i]+=c[i-1];
for(int i=n;i>=1;i--)sa[c[x[y[i]]]--]=y[i],y[i]=0;
for(int i=1;i<=n;i++)swap(x[i],y[i]);
x[sa[1]]=1;num=1;
for(int i=2;i<=n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?num:++num;
if(n==num)return;
m=num;
}
}
void get_height(){
int k=0;
for(int i=1;i<=n;i++)rk[sa[i]]=i;
for(int i=1;i<=n;i++){
if(rk[i]==1)continue;
if(k)k--;
int j=sa[rk[i]-1];
while(i+k<=n&&j+k<=n&&s[i+k]==s[j+k])k++;
height[rk[i]]=k;
}
}
int judge(int x){
int num=0;
tmp=0;
for(int i=1;i<=n;i++){
if(tmp+n-sa[i]+1-height[i]>=x){
int len=0;
for(int j=sa[i];j-sa[i]+1-height[i]<=x-tmp;j++)len++;
int mn=height[i+1];
num+=len;
for(int j=i+1;j<=n;j++){
mn=min(height[j],mn);
if(height[j]<len){
for(int k=j;k<=n;k++){
mn=min(height[k],mn);
num+=mn;
}
return num;
}
num+=len;
}
}
num+=n-sa[i]+1;
tmp=tmp+n-sa[i]+1-height[i];
}
}
int main(){
scanf("%s",s+1);
n=strlen(s+1);
m=122;
get_sa();get_height();
t=read();k=read();
if(n*(n+1)/2<k){
printf("-1");
return 0;
}
if(t==0){
for(int i=1;i<=n;i++){
if(tmp+n-sa[i]+1-height[i]>=k){
for(int j=sa[i];j-sa[i]+1-height[i]<=k-tmp;j++)printf("%c",s[j]);
return 0;
}
tmp=tmp+n-sa[i]+1-height[i];
}
}
else{
int l=1,r=k;
while(l<=r){
int mid=(l+r)>>1;
if(judge(mid)>=k){
ans=mid;
r=mid-1;
}
else l=mid+1;
}
tmp=0;
for(int i=1;i<=n;i++){
if(tmp+n-sa[i]+1-height[i]>=ans){
for(int j=sa[i];j-sa[i]+1-height[i]<=ans-tmp;j++)printf("%c",s[j]);
return 0;
}
tmp=tmp+n-sa[i]+1-height[i];
}
}
return 0;
}
解法二 后缀自动机
表示后缀自动机根本不会用。555
trans数组看做边的话一个\(DAG\),从这个\(root\)出发的每一条路径对应原串的一个子串这些子串都是本质不同的。我们可以做一个DP求出从一个点出发的所有路径有多少条路径转移方程\(dp[u]=1+\sum dp[v]\)。然后再在图上像类似线段树上二分的方法就可以求出答案了。
那么第二问该怎么办?
我们注意到一个串出现的次数就是后缀树中这个节点的子树内的后缀节点数(就是代表一个串结束的节点数)。所以我们可以仿照第一问的方案,只不过DP的方程改为了\(dp[u]=size[u]+\sum dp[v]\)(这里的\(size[u]\)代表后缀树中\(u\)的子树的后缀节点数)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=1001000;
int tot=1,u=1,len[N],size[N],fa[N],trans[N][27],n,t,k,f[N],c[N],A[N];;
bool vis[N];
char s[N];
void ins(int c){
int x=++tot;size[x]=1;
len[x]=len[u]+1;
for(;u&&trans[u][c]==0;u=fa[u])trans[u][c]=x;
if(u==0)fa[x]=1;
else{
int v=trans[u][c];
if(len[u]+1==len[v])fa[x]=v;
else{
int w=++tot;
len[w]=len[u]+1;
memcpy(trans[w],trans[v],sizeof(trans[w]));fa[w]=fa[v];
fa[v]=fa[x]=w;
for(;u&&trans[u][c]==v;u=fa[u])trans[u][c]=w;
}
}
u=x;
}
void work(int x,int k){
if(k<=size[x]) return;
k-=size[x];
for(int i=1;i<=26;i++){
int R=trans[x][i]; if(!R) continue;
if(k>f[R]) {k-=f[R];continue;}
putchar(i+'a'-1);work(R,k);return;
}
}
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int main(){
scanf("%s",s+1);
n=strlen(s+1);
for(int i=1;i<=n;i++)ins(s[i]-'a'+1);
t=read();k=read();
if(n*(n+1)/2<k){printf("-1");return 0;}
for(int i=1;i<=tot;i++)c[len[i]]++;
for(int i=1;i<=tot;i++)c[i]+=c[i-1];
for(int i=1;i<=tot;i++)A[c[len[i]]--]=i;
for(int i=tot;i>=1;i--)size[fa[A[i]]]+=size[A[i]];
for(int i=1;i<=tot;i++)t==0?(f[i]=size[i]=1):(f[i]=size[i]);
size[1]=f[1]=0;
for(int i=tot;i>=1;i--)
for(int j=1;j<=26;j++)
if(trans[A[i]][j])f[A[i]]+=f[trans[A[i]][j]];
work(1,k);
return 0;
}
解法三:后缀树
也是类似线段树二分的思想跟SAM差不多,不过不是在图里二分了,在树上二分。
[TJOI2015]弦论(后缀数组or后缀自动机)的更多相关文章
- (持续更新)虚树,KD-Tree,长链剖分,后缀数组,后缀自动机
真的就是讲课两天,吸收一个月呢! \(1.\)虚树 \(2.\)KD-Tree \(3.\)长链剖分 \(4.\)后缀数组 后缀数组 \(5.\)后缀自动机 后缀自动机
- hdu4436-str2int(后缀数组 or 后缀自动机)
题意:给你一堆字符串,仅包含数字'0'到'9'. 例如 101 123 有一个字符串集合S包含输入的N个字符串,和他们的全部字串. 操作字符串很无聊,你决定把它们转化成数字. 你可以把一个字符串转换成 ...
- 字符串数据结构模板/题单(后缀数组,后缀自动机,LCP,后缀平衡树,回文自动机)
模板 后缀数组 #include<bits/stdc++.h> #define R register int using namespace std; const int N=1e6+9; ...
- poj 2774 最长公共子--弦hash或后缀数组或后缀自己主动机
http://poj.org/problem?id=2774 我想看看这里的后缀数组:http://blog.csdn.net/u011026968/article/details/22801015 ...
- poj2774 Long Long Message(后缀数组or后缀自动机)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Long Long Message Time Limit: 4000MS Me ...
- 字符串 --- KMP Eentend-Kmp 自动机 trie图 trie树 后缀树 后缀数组
涉及到字符串的问题,无外乎这样一些算法和数据结构:自动机 KMP算法 Extend-KMP 后缀树 后缀数组 trie树 trie图及其应用.当然这些都是比较高级的数据结构和算法,而这里面最常用和最熟 ...
- bzoj 3172 后缀数组|AC自动机
后缀数组或者AC自动机都可以,模板题. /************************************************************** Problem: 3172 Us ...
- SPOJ694 DISUBSTR --- 后缀数组 / 后缀自动机
SPOJ694 DISUBSTR 题目描述: Given a string, we need to find the total number of its distinct substrings. ...
- POJ3080 POJ3450Corporate Identity(广义后缀自动机||后缀数组||KMP)
Beside other services, ACM helps companies to clearly state their “corporate identity”, which includ ...
随机推荐
- Unity 烘焙的2种方式
游戏场景通常有许多光源,使用实时渲染会非常消耗性能,解决办法是烘焙,烘焙有2种方式. 1, 在3dmax等模型制作软件中对场景进行烘焙.将烘焙好的模型以及贴图导入到unity3d. 相对复杂但效果好 ...
- ZBrush模型的细分
在ZBrush®中对模型进行雕刻时,随着细节越来越丰富,原有的面数已经不能满足我们对细节的要求,为了得到更多的细节,我们就必须增加模型的面数,让更多的面来支持我们进行雕刻,如下图(左)和下图(右)所示 ...
- TF基础3
批标准化 批标准化(batch normalization,BN)是为了克服神经网络层数加深导致难以训练而诞生的.深度神经网络随着深度加深,收敛会越来越慢,会导致梯度弥散问题(vanishing gr ...
- C# 正则表达式大全(转载)
文章导读 正则表达式的本质是使用一系列特殊字符模式,来表示某一类字符串.正则表达式无疑是处理文本最有力的工具,而.NET提供的Regex类实现了验证正则表达式的方法.Regex 类表示不可变(只读)的 ...
- P1494 [国家集训队]小Z的袜子(luogu)
P1494 小Z的袜子 终于了解了莫队算法(更专业的名称Square Root Decomposition of Queries) 莫队算法: 一般来说解决静态(实际上也有修改的但复杂度更高)的离线( ...
- 大数据相关文档&Api下载
IT相关文档&Api下载(不断更新中) 下载地址:https://download.csdn.net/user/qq_42797237/uploads 如有没有你需要的API,可和我留言,留下 ...
- noip复习之拓扑排序
之前很多很多紫书上的东西我都忘了…… 抄题解的后果…… 做了一下裸题 https://vjudge.net/problem/UVA-10305 拓扑排序还可以来判环 #include<bits/ ...
- JS深拷贝拷贝的区别?
拷贝拷贝引用,共享内存 深拷贝拷贝实例,不共享内存 1. 浅拷贝:当一个对象拷贝另一个对象的数据时,只要一个对象的数据发生改变时,另一个对象的数据也会发生改变,因为浅拷贝拷贝的是引用的地址 实现方 ...
- webpack加载器(Loaders)
加载器(Loaders) loader 是对应用程序中资源文件进行转换.它们是(运行在 Node.js 中的)函数,可以将资源文件作为参数的来源,然后返回新的资源文件. 示例 例如,你可以使用 loa ...
- java中new一个对象的执行过程及类的加载顺序
1,new一个对象时代码的执行顺序 (1)加载父类(以下序号相同,表明初始化是按代码从上到下的顺序来的) 1.为父类的静态属性分配空间并赋于初值 1.执行父类静态初始化块; (2)加载子类 2.为子类 ...