http://codextechnicanum.blogspot.com/2013/12/embedding-python-in-c-converting-c.html

//Make some vectors containing the data
static const double xarr[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14};
std::vector<double> xvec (xarr, xarr + sizeof(xarr) / sizeof(xarr[0]) );
static const double yarr[] = {0,0,1,1,0,0,2,2,0,0,1,1,0,0};
std::vector<double> yvec (yarr, yarr + sizeof(yarr) / sizeof(yarr[0]) ); //Transfer the C++ vector to a python tuple
pXVec = PyTuple_New(xvec.size());
for (i = 0; i < xvec.size(); ++i) {
pValue = PyFloat_FromDouble(xvec[i]);
if (!pValue) {
Py_DECREF(pXVec);
Py_DECREF(pModule);
fprintf(stderr, "Cannot convert array value\n");
return 1;
}
PyTuple_SetItem(pXVec, i, pValue);
} //Transfer the other C++ vector to a python tuple
pYVec = PyTuple_New(yvec.size());
for (i = 0; i < yvec.size(); ++i) {
pValue = PyFloat_FromDouble(yvec[i]);
if (!pValue) {
Py_DECREF(pYVec);
Py_DECREF(pModule);
fprintf(stderr, "Cannot convert array value\n");
return 1;
}
PyTuple_SetItem(pYVec, i, pValue); //
} //Set the argument tuple to contain the two input tuples
PyTuple_SetItem(pArgTuple, 0, pXVec);
PyTuple_SetItem(pArgTuple, 1, pYVec); //Call the python function
pValue = PyObject_CallObject(pFunc, pArgTuple);

Here's the entire .py file:

def plotStdVectors(x, y):
import numpy as np
import matplotlib.pyplot as plt
print "Printing from Python in plotStdVectors()"
print x
print y
x = np.fromiter(x, dtype = np.float)
y = np.fromiter(y, dtype = np.float)
print x
print y
plt.plot(x, y)
plt.show()
return 0

And, after compiling with the Makefile (which is for Ubuntu 12.10 using the system's default Python installation), can be run with:

$ ./testEmbed pythonToEmbed plotStdVectors
Hello from main
Hello from runPython()
Printing from Python in plotStdVectors()
(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0)
(0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0)
[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.]
[ 0. 0. 1. 1. 0. 0. 2. 2. 0. 0. 1. 1. 0. 0.]
Result of call: 0
Program finished

And the plot:

 
Posted by Frogeeat 10:54 AM 
Real Time Plotting with C/C++ and python

Concepts:

Standard input/output (Think: the input and output of your program)
Unix Pipes
Plotting with matplotlib So, you have your code working, but you are tired of having to run a separate program to see plots? There are many simple solutions, but I am going to present what I think is the absolute simplest. What we are going to do is have your C/C++ program output the data and have python capture it and save plots in real-time! What does this entail? Well... Your C/C++ program no longer writes to a file (using fprintf), but rather writes to the standard output (STDIN, using simply printf)
Your python script will now read data straight from STDIN using raw_input()
You will have to use a unix shell to sew all of this together
Let's look at a very simple example. Suppose we have a very important C program that outputs some very important numbers. In order for it to work with this new standard, we have it output the data to screen. Namely, it does: makedata.c
#include <stdio.h>
#include <math.h> #define PI 3.14159 int main()
{
int i,j;
for(j=; j<; j++) {
for(i=; i<; i++) {
printf("%f\t",sinf(i * PI / 10.0 + j*PI/));
}
printf("\n");
} return ;
}
Now, when we run this, we get a bunch of numbers thrown to screen! $ gcc -lm -o makedata makedata.c
$ ./makedata
0.000000 0.309017 0.587785 0.809017 0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022
0.309017 0.587785 0.809017 0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005
0.587785 0.809017 0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012
0.809017 0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781
0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013
1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055
0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055 1.000000
0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055 1.000000 0.951059
0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055 1.000000 0.951059 0.809021
0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055 1.000000 0.951059 0.809021 0.587792
In order to capture the data in python, we must use the raw_input() function. This function simply gets input from the user and puts it into a variable. It puts everything the user types up to when they press enter. This is why the C code is that it only prints a newline (ie: '\n') once one full line of data has been outputted to screen. If we had put a newline in the first printf statement, the python plotting program would only plot one number at a time! So, you can think of the tab (\t) as deliniating between values and the newline (\n) deliniating between different sets of data. The python code that reads this data looks like: plot.py
import numpy as np
import pylab as py def plot_data(data):
py.clf()
py.plot(data)
py.show()
py.savefig("data-%.8d.png"%counter) if __name__ == "__main__":
counter =
while True:
try:
tmp = raw_input().strip().split()
data = np.array(tmp, dtype=np.double)
except EOFError:
print "Input has terminated! Exiting"
exit()
except ValueError:
print "Invalid input, skipping. Input was: %s"%tmp
continue print "Plotting plot number %d"%counter
plot_data(data)
counter +=
You can test this program by running it, typing a bunch of numbers separated by a space, then pressing enter. It will plot it, display it and save it! Then, the program will ask you again for more numbers. To exit, you type Control-D which makes the EOFError happen. What is going on in this program is quite simple. First, "tmp" gets the long string of characters that you typed in. However, python doesn't know it contains numbers, it just looks like a bunch of random characters! Now, we use numpy and tell it to create an array out of the data. The "dtype=np.double" is us telling numpy that we are realing with valid numbers. A ValueError happens if we weren't good on our promise and the input isn't in fact all numbers. Now for the most important part... how do we put these two things together? Unix has a very cool thing called input/output redirection. This allows us to redirect the output of one program to the input of another. So, instead of us having to type in the numbers for the python script, we can have the C/C++ program type it for us! The syntax is quite simple, all you have to do is: $ ./makedata | python plot.py
And now you are done! You should have a bunch of plots coming up of sin waves with various phases. Congrats! There is one more thing you can do to make your plots even more fancy. Sometimes, you don't want to save each figure or have to click through to see every plot, one at a time. Instead, you just want to see an animation of what is happening as it is happening! Or, you are already making an animation with many py.plot() statements, and you want it to be smoother and faster! To do this, you can to look into pylab animations. The people at scipy have a great tutorial on this issue. You can also look at a small plotting script I made which does something very similar. The basics of this method involve: creating your plots at the beginning of your script, and saving them into variables. Then, when you get new data that you want to plot, you simply change the data in the plot with .set_data(). One thing to note is the line "py.ion()" right after I imported pylab and how I use py.draw() instead of py.show(). If you want to get started playing around with this, simply take the same code from earlier in this document, add "py.ion()" after we import pylab, delete the py.savefig() line and replace py.show() with py.draw()! This will give you a (quite slow) animation.

DECREF

http://stackoverflow.com/questions/6977161/where-should-i-put-py-incref-and-py-decref-on-this-block-in-python-c-extension

The objects you create with PyInt_FromLong() and you add to the list should be kept in a local variable.

The reason are the ownership rules: PyInt_FromLong() generates a reference that you own. In the call to PyTuple_SetItem(), you lose this ownership again, because PyTuple_SetItem() "steals" it from you, so you don't have to care about. But PyList_Append() doesn't do so, it increases the refcount. In order to have the object GC'ed correctly, you have to release your ownership by DECREF'ing.

So, instead of PyList_Append(item, PyInt_FromLong(jp)), you do the following:

PyObject * jpo = PyInt_FromLong(jp);
// do some error checking here
PyList_Append(item, jpo);
Py_DECREF(jpo);

boost.python

https://www.youtube.com/watch?v=GE8EsGUsC2w

python c api

pyerr_setstring

boost

register_exception_translator

handy debugging tip

boost::python::throw_error_already_set(), set breakpoint here

https://bitbucket.org/sixty-north/scipy2014_boost_python_workshop_student_material/src

simply expose c++ function to python

boost::python::def

Embedding Python in C的更多相关文章

  1. Embeding Python & Extending Python with FFPython

    Introduction ffpython is a C++ lib, which is to simplify tasks that embed Python and extend Python. ...

  2. hybrid programming based on python and C/C++

    Python/C API Reference Manual¶ https://docs.python.org/3/c-api/index.html Extending and Embedding th ...

  3. 很好的c++和Python混合编程文章

    c++中嵌入python入门1 本人是用vc2003+python2.5学习的,其它的也应该差不了多少 0. 坏境设置把Python的include/libs目录分别加到vc的include/lib ...

  4. py_initialize:C调Python出错 是初始化错误?

    还是pythonpath和pythonname变量没有配置正确? py_initialize()方法是什么? In an application embedding Python, this shou ...

  5. Python中的__name__和__main__含义详解

    1背景 在写Python代码和看Python代码时,我们常常可以看到这样的代码: ? 1 2 3 4 5 def main():     ......   if __name == "__m ...

  6. 浅析 C++ 调用 Python 模块

    浅析 C++ 调用 Python 模块 作为一种胶水语言,Python 能够很容易地调用 C . C++ 等语言,也能够通过其他语言调用 Python 的模块. Python 提供了 C++ 库,使得 ...

  7. 结合python版本安装python-devel gcc和g++的区别 安装前做yum搜索

    [test@ecs autocloudservices]# yum install python-develLoaded plugins: fastestmirrorLoading mirror sp ...

  8. Python与Javascript相互调用超详细讲解(2022年1月最新)(三)基本原理Part 3 - 通过C/C++联通

    目录 TL; DR python调javascript javascript调python 原理 基于Node.js的javascript调用python 从Node调用python函数 V8 嵌入P ...

  9. 推荐一个第三方Qt库的集合

    https://inqlude.org/ Stable libraries | Development versions | Unreleased | Commercial | All attica ...

随机推荐

  1. hadoop2.X使用手册1:通过web端口查看主节点、slave1节点及集群运行状态

    导读内容:1.如何通过web查看hdfs集群状态2.如何通过web查看运行在在主节点master上ResourceManager状态3.如何通过web查看运行在在slave节点NodeManager资 ...

  2. NodeJS http 模块

    #4 NodeJS http 模块 工作目录 server.js var http = require('http'); var fs = require('fs'); var path = requ ...

  3. Unity开发游戏 flapybird 无广告老马版分享

    Flapybird确实是一款非常好玩的游戏,但是上手难度比较大.经过老马模仿加工,把游戏难度降低,而且不加入任何广告. 特此分享.下载地址:http://files.cnblogs.com/fly_d ...

  4. [stm32] MPU6050 HMC5883 Kalman 融合算法移植

    一.卡尔曼滤波九轴融合算法stm32尝试 1.Kalman滤波文件[.h已经封装为结构体] /* Copyright (C) 2012 Kristian Lauszus, TKJ Electronic ...

  5. 自制一个能显示helloworld的最简单OS

    <自己动手写操作系统> org 07c00h mov ax,cs mov ds,ax mov es,ax call DispStr jmp $ DispStr: mov ax,BootMe ...

  6. iOS开发之静态库(五)—— 图片、界面xib等资源文件封装到静态框架framework

    编译环境:Macbook Air + OS X 10.9.2 + XCode5.1 + iPhone5s(iOS7.0.3) 一.首先将资源文件打包成bundle 由于bundle是静态的,所以可以将 ...

  7. 详解Bootstrap缩略图组件及警示框组件

    缩略图组件 缩略图在网站中最常用的就是产品列表页面,一行显示几张图片,有的在图片底下带有标题.描述内容.按钮等信息.bootstrap框架将这部分独立成一个模块组件,通过类名.thumbnail配合b ...

  8. 21个高质量的Swift开源iOS App

    原文:21 Amazing Open Source iOS Apps Written in Swift 对Swift初学者来说,学习开源项目,阅读源码是个不错的方法.在这篇文章中,基于对代码质量和排名 ...

  9. iOS Vuforia:TextReco 增加自己的单词库

          Vuforia的文字识别引擎提供了很好的文字识别功能.引擎依赖于UTF-8字符编码,现支持的字符有A-Z a-z,换行符.空格.单引号.短斜杠.Note:不支持中文及数字.能识别的字体是: ...

  10. j$(function() j$(document).ready 区别

    $j(document).ready(function(){}); // 或者  $j(function(){}); 第一个是直接使用Jquery调用function,第二个是在文档加载完毕后才去调用 ...