【转】高斯消元模板 by kuangbin
写的很好,注释很详细,很全面。
原blog地址:http://www.cnblogs.com/kuangbin/archive/2012/09/01/2667044.html
#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std; const int MAXN=; int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元 /*
void Debug(void)
{
int i, j;
for (i = 0; i < equ; i++)
{
for (j = 0; j < var + 1; j++)
{
cout << a[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
*/ inline int gcd(int a,int b)
{
int t;
while(b!=)
{
t=b;
b=a%b;
a=t;
}
return a;
}
inline int lcm(int a,int b)
{
return a/gcd(a,b)*b;//先除后乘防溢出
} // 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var)
{
int i,j,k;
int max_r;// 当前这列绝对值最大的行.
int col;//当前处理的列
int ta,tb;
int LCM;
int temp;
int free_x_num;
int free_index; for(int i=;i<=var;i++)
{
x[i]=;
free_x[i]=true;
} //转换为阶梯阵.
col=; // 当前处理的列
for(k = ;k < equ && col < var;k++,col++)
{// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
max_r=k;
for(i=k+;i<equ;i++)
{
if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
}
if(max_r!=k)
{// 与第k行交换.
for(j=k;j<var+;j++) swap(a[k][j],a[max_r][j]);
}
if(a[k][col]==)
{// 说明该col列第k行以下全是0了,则处理当前行的下一列.
k--;
continue;
}
for(i=k+;i<equ;i++)
{// 枚举要删去的行.
if(a[i][col]!=)
{
LCM = lcm(abs(a[i][col]),abs(a[k][col]));
ta = LCM/abs(a[i][col]);
tb = LCM/abs(a[k][col]);
if(a[i][col]*a[k][col]<)tb=-tb;//异号的情况是相加
for(j=col;j<var+;j++)
{
a[i][j] = a[i][j]*ta-a[k][j]*tb;
}
}
}
} // Debug(); // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
for (i = k; i < equ; i++)
{ // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
if (a[i][col] != ) return -;
}
// 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
// 且出现的行数即为自由变元的个数.
if (k < var)
{
// 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
for (i = k - ; i >= ; i--)
{
// 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
// 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
free_x_num = ; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
for (j = ; j < var; j++)
{
if (a[i][j] != && free_x[j]) free_x_num++, free_index = j;
}
if (free_x_num > ) continue; // 无法求解出确定的变元.
// 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
temp = a[i][var];
for (j = ; j < var; j++)
{
if (a[i][j] != && j != free_index) temp -= a[i][j] * x[j];
}
x[free_index] = temp / a[i][free_index]; // 求出该变元.
free_x[free_index] = ; // 该变元是确定的.
}
return var - k; // 自由变元有var - k个.
}
// 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
// 计算出Xn-1, Xn-2 ... X0.
for (i = var - ; i >= ; i--)
{
temp = a[i][var];
for (j = i + ; j < var; j++)
{
if (a[i][j] != ) temp -= a[i][j] * x[j];
}
if (temp % a[i][i] != ) return -; // 说明有浮点数解,但无整数解.
x[i] = temp / a[i][i];
}
return ;
}
int main(void)
{
freopen("in.txt", "r", stdin);
freopen("out.txt","w",stdout);
int i, j;
int equ,var;
while (scanf("%d %d", &equ, &var) != EOF)
{
memset(a, , sizeof(a));
for (i = ; i < equ; i++)
{
for (j = ; j < var + ; j++)
{
scanf("%d", &a[i][j]);
}
}
// Debug();
int free_num = Gauss(equ,var);
if (free_num == -) printf("无解!\n");
else if (free_num == -) printf("有浮点数解,无整数解!\n");
else if (free_num > )
{
printf("无穷多解! 自由变元个数为%d\n", free_num);
for (i = ; i < var; i++)
{
if (free_x[i]) printf("x%d 是不确定的\n", i + );
else printf("x%d: %d\n", i + , x[i]);
}
}
else
{
for (i = ; i < var; i++)
{
printf("x%d: %d\n", i + , x[i]);
}
}
printf("\n");
}
return ;
}
【转】高斯消元模板 by kuangbin的更多相关文章
- 高斯消元模板!!!bzoj1013
/* 高斯消元模板题 n维球体确定圆心必须要用到n+1个点 设圆心坐标(x1,x2,x3,x4...xn),半径为C 设第i个点坐标为(ai1,ai2,ai3,,,ain)那么对应的方程为 (x1-a ...
- HDU 3359 高斯消元模板题,
http://acm.hdu.edu.cn/showproblem.php?pid=3359 题目的意思是,由矩阵A生成矩阵B的方法是: 以a[i][j]为中心的,哈曼顿距离不大于dis的数字的总和 ...
- 【Luogu】P3389高斯消元模板(矩阵高斯消元)
题目链接 高斯消元其实是个大模拟qwq 所以就着代码食用 首先我们读入 ;i<=n;++i) ;j<=n+;++j) scanf("%lf",&s[i][j]) ...
- kuangbin大佬的高斯消元模板
dalao解释的博客 #include <bits/stdc++.h> using namespace std; ; int a[MAXN][MAXN];//增广矩阵 int x[MAXN ...
- 高斯消元模板(pascal)
洛谷P3389评测 program rrr(input,output); const eps=1e-8; var a:..,..]of double; n,i,j,k:longint; t:doubl ...
- java高斯消元模板
//package fuc; import java.io.PrintStream; import java.math.BigInteger; import java.util.Scanner; pu ...
- POJ 1681 Painter's Problem(高斯消元+枚举自由变元)
http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是 ...
- NEFU 503 矩阵求解 (非01异或的高斯消元)
题目链接 中文题,高斯消元模板题. #include <iostream> #include <cstdio> #include <cmath> #include ...
- hdu4418(概率dp + 高斯消元)
应该是一个入门级别的题目. 但是有几个坑点. 1. 只选择x能到达的点作为guass中的未知数. 2. m可能大于n,所以在构建方程组时未知数的系数不能直接等于,要+= 3.题意貌似说的有问题,D为- ...
随机推荐
- mvc area区域和异步表单,bootstrap简单实例
码农最怕眼高手低 今天来练习mvc Area技术和bootstrap以及异步表单的C#代码实现. 1.area区域架构对于建立复杂业务逻辑很有帮助,由 AreaRegistration.Regist ...
- 使用PS3手柄在PC玩Unity3D游戏
PS3手柄玩Unity游戏 今天把公司的PS3手柄接到PC上,想用手柄试一下玩赛车的感觉,老感觉用键盘按键玩的不爽. 把PS3的手柄接到PC上之后,系统提示正在安装驱动--,百度找资料,如何在PC上使 ...
- java10-1 Object类
Object:类 Object 是类层次结构的根类.每个类都使用 Object 作为超类. 每个类都直接或者间接的继承自Object类. Object类的方法: public int has ...
- 立即执行函数与window.onload作用类似
(function(){ }()); // 立即执行函数 或者用window.onload=function(){}也可以
- C++中各种数据类型占据字节长度
准备校招笔试的时候经常遇到C++某个数据类型占据多少个字节的问题,查阅了下资料,总结如下: 首先罗列一下C++中的数据类型都有哪些: 1.整形:int.long 2.字符型:char.wchar_t ...
- [Usaco2008 Nov]mixup2 混乱的奶牛 简单状压DP
1231: [Usaco2008 Nov]mixup2 混乱的奶牛 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 685 Solved: 383[S ...
- Verilog学习笔记基本语法篇(九)········ 任务和函数
task 和 function 说明语句分别用来定义任务和函数,利用任务和函数可以把函数模块分成许多小的任务和函数便于理解和调试.任务和函数往往还是大的程序模块在不同地点多次用到的相同的程序段.输入. ...
- Binary Search Tree Iterator
Implement an iterator over a binary search tree (BST). Your iterator will be initialized with the ro ...
- [CareerCup] 3.1 Implement Three Stacks using Array 使用数组来实现三个栈
3.1 Describe how you could use a single array to implement three stacks. 这道题让我们用一个数组来实现三个栈,书上给了两种方法, ...
- IOS开发之——keychain使用介绍 保护本地文件的安全
iOS的keychain服务提供了一种安全的保存私密信息(密码,序列号,证书等)的方式.每个ios程序都有一个独立的keychain存储.从ios 3.0开始,跨程序分享keychain变得可行. 使 ...