尺度空间方法的基本思想是:在视觉信息处理模型中引入一个被视为尺度的参数,通过连续变化尺度参数获得不同尺度下的视觉处理信息,然后综合这些信息以深入地挖掘图像的本质特征。尺度空间方法将传统的单尺度视觉信息处理技术纳入尺度不断变化的动态分析框架中,因此更容易获得图像的本质特征。尺度空间的生成目的是模拟图像数据多尺度特征。高斯卷积核是实现尺度变换的唯一线性核。

尺度空间理论的动机:

  • 现实世界的物体由不同尺度的结构所组成;
  • 在人的视觉中,对物体观察的尺度不同,物体的呈现方式也不同;
  • 对计算机视觉而言,无法预知某种尺度的物体结构是有意义的,因此有必要将所有尺度的结构表示出来;
  • 从测量的角度来说,对物体的测量数据必然是依赖于某个尺度的,例如温度曲线的采集,不可能是无限的,而是在一定温度范围进行量化采集。温度范围即是选择的尺度;
  • 采用尺度空间理论对物体建模,即将尺度的概念融合入物理模型之中。

尺度空间公理

  • 线性
  • 平移不变性
  • 半群特性:g(x,y,t1) * g(x,y,t2) = g(x,y,t1 + t2)
  • 旋转不变性
  • 尺度不变性
  • 正定性
  • 正规性(积分为1)
  • 不会引入新的极点
  • 不会增强极点
  • 存在无穷小的算子(可微性)

按照以上条件,唯一可能的尺度空间核函数是高斯核函数。

热扩散方程:
根据微分方程理论,以上核函数家族可以表示成如下热扩散方程的解:

 初始条件是L(x,y;0) = f(x,y)

多尺度边缘检测和blob检测:

  • 梯度算子用于边缘检测
  • 过零点检测:二次微分不变性方程
    满足三次微分不变性不等式:
  • blob检测:拉普拉斯高斯方程或者Hessian矩阵的行列式

自动尺度选择和尺度不变特征选择:

  • 实际问题中可能要选择局部的尺度,然后进一步分析
  • 尺度不变的特征是满足尺度不变性质的特征,这个特征在一个尺度下探测到,可以很容易映射到另一个尺度的对应位置。

其他多尺度表示方法:

    • 金字塔表示
    • 非线性尺度空间
    • 仿射高斯尺度空间
    • 小波理论

paper 64:尺度空间(Scale space)理论的更多相关文章

  1. 模式匹配之尺度空间---scale space

    转载:http://www.cnblogs.com/cfantaisie/archive/2011/06/14/2080917.html   主要步骤  1).尺度空间的生成:     2).检测尺度 ...

  2. 尺度空间(Scale space)理论

    尺度空间方法的基本思想是:在视觉信息处理模型中引入一个被视为尺度的參数,通过连续变化尺度參数获得不同尺度下的视觉处理信息,然后综合这些信息以深入地挖掘图像的本质特征.尺度空间方法将传统的单尺度视觉信息 ...

  3. paper 65 :尺度不变特征变换匹配算法[转载]

    尺度不变特征变换匹配算法 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越.1.SIFT综述 尺度不变特征转换(Scale-invariant feature transf ...

  4. SIFT算法详解(转)

    http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature ...

  5. 【转】 SIFT算法详解

    尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com 对于初学者,从Davi ...

  6. SIFT算法详解

    尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com or (zddhub@ ...

  7. 转:sift算法详解

    转自:http://blog.csdn.net/pi9nc/article/details/23302075 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIF ...

  8. SIFT算法详解(转)

    原文地址 http://blog.csdn.net/pi9nc/article/details/23302075 尺度不变特征变换匹配算法详解 Scale Invariant Feature Tran ...

  9. Image Processing and Analysis_21_Scale Space:Feature Detection with Automatic Scale Selection——1998

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

随机推荐

  1. mysql binlog恢复

    MySQL Binary Log也就是常说的bin-log, ,是mysql执行改动产生的二进制日志文件,其主要作用有两个: * 数据回复 * 主从数据库.用于slave端执行增删改,保持与maste ...

  2. HBASE的读写以及client API

    一:读写思想 1.系统表 hbase:namespace 存储hbase中所有的namespace的信息 hbase:meta rowkey:hbase中所有表的region的名称 column:re ...

  3. 安装Postman

    原文地址:http://blog.csdn.net/ouyang111222/article/details/45743831 ** (一)安装篇 ** Postman是一款功能强大的网页调试与发送网 ...

  4. Android笔记:java 中的枚举

    部分数据使用枚举比较方便,java中的enmu不如c#中使用方便 记录备忘 以c#中的代码为例 public enum PlayState { /// <summary> /// 关闭 / ...

  5. Java学习-013-文本文件读取实例源代码(两种数据返回格式)

    此文源码主要为应用 Java 读取文本文件内容实例的源代码.若有不足之处,敬请大神指正,不胜感激! 1.读取的文本文件内容以一维数组[LinkedList<String>]的形式返回,源代 ...

  6. 一些Perl例程(全部手打并执行过)

    #-1-变量使用,打印#!/usr/local/bin/perl$value=100+30+3+8;print("Value=",$value,"\n"); # ...

  7. textarea 默认文字获取焦点失去焦点

    <textarea name="textarea" cols="" title="contactForm" class="t ...

  8. js引入img标签和图片

    <!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. Android中制作自定义dialog对话框的实例

    http://www.jb51.net/article/83319.htm   这篇文章主要介绍了Android中制作自定义dialog对话框的实例分享,安卓自带的Dialog显然不够用,因而我们要继 ...

  10. C# WebSocket 服务端示例代码 + HTML5客户端示例代码

    WebSocket服务端 C#示例代码 using System; using System.Collections.Generic; using System.Linq; using System. ...