n个元素进栈,共有多少种出栈顺序?
1.基于栈的问题分析
我们把n个元素的出栈个数的记为f(n), 那么对于1,2,3, 我们很容易得出:
f(1) = 1 //即 1
f(2) = 2 //即 12、21
f(3) = 5 //即 123、132、213、321、231
然后我们来考虑f(4), 我们给4个元素编号为a,b,c,d, 那么考虑:元素a只可能出现在1号位置,2号位置,3号位置和4号位置(很容易理解,一共就4个位置,比如abcd,元素a就在1号位置)。
分析:
1) 如果元素a在1号位置,那么只可能a进栈,马上出栈,此时还剩元素b、c、d等待操作,就是子问题f(3);
2) 如果元素a在2号位置,那么一定有一个元素比a先出栈,即有f(1)种可能顺序(只能是b),还剩c、d,即f(2), 根据乘法原理,一共的顺序个数为f(1) * f(2);
3) 如果元素a在3号位置,那么一定有两个元素比1先出栈,即有f(2)种可能顺序(只能是b、c),还剩d,即f(1),
根据乘法原理,一共的顺序个数为f(2) * f(1);
4) 如果元素a在4号位置,那么一定是a先进栈,最后出栈,那么元素b、c、d的出栈顺序即是此小问题的解,即f(3);
结合所有情况,即f(4) = f(3) + f(2) * f(1) + f(1) * f(2) + f(3);
为了规整化,我们定义f(0) = 1;于是f(4)可以重新写为:
f(4) = f(0)*f(3) + f(1)*f(2) + f(2) * f(1) + f(3)*f(0)
然后我们推广到n,推广思路和n=4时完全一样,于是我们可以得到:
f(n) = f(0)*f(n-1) + f(1)*f(n-2) + ... + f(n-1)*f(0)
即
2. 相关的求解方法
(1)非常规数值分析
对于每一个数来说,必须进栈一次、出栈一次。我们把进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。
在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。
不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。
反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。
因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。
显然,不符合要求的方案数为c(2n,n+1)。
由此得出输出序列的总数目=c(2n,n)-c(2n,n+1)=c(2n,n)/(n+1)。其中,n为节点的个数。
(2)从图像上分析
事实上,可以认为问题是,任意两种操作,要求每种操作的总次数一样,且进行第k次操作2前必须先进行至少k次操作1。我们假设一个人在原点,操作1是此人沿右上角45°走一个单位(一个单位设为根号2,这样他第一次进行操作1就刚好走到(1,1)点),操作2是此人沿右下角45°走一个单位。第k次操作2前必须先进行至少k次操作1,就是说明所走出来的折线不能跨越x轴走到y=-1这条线上!在进行n次操作1和n此操作2后,此人必将到到达(2n,0)!若无跨越x轴的限制,折线的种数将为C(2n,n),即在2n次操作中选出n次作为操作1的方法数。
现在只要减去跨越了x轴的情况数。对于任意跨越x轴的情况,必有将与y=-1相交。找出第一个与y=-1相交的点k,将k点以右的折线根据y=-1对称(即操作1与操作2互换了)。可以发现终点最终都会从(2n,0)对称到(2n,-2)。由于对称总是能进行的,且是可逆的。我们可以得出所有跨越了x轴的折线总数是与从(0,0)到(2n,-2)的折线总数。而后者的操作2比操作1要多0-(-2)=2次。即操作1为n-1,操作2为n+1。总数为C(2n,n-1)。(此处类似于上面的数值角度分析)
(3)卡特兰数介绍
令h(0)=1,h(1)=1,catalan数满足递推式[1]:
h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)
例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2
h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5
递推关系的解为:
3.类似的问题
(1)买票找零
有2n个人排成一行进入剧场。入场费5元。其中只有n个人有一张5元钞票,另外n人只有10元钞票,剧院无其它钞票,问有多少中方法使得只要有10元的人买票,售票处就有5元的钞票找零?(将持5元者到达视作将5元入栈,持10元者到达视作使栈中某5元出栈)
(2)一个有n个1和n个-1组成的字串,且前k个数的和均不小于0,那这种字串的总数为多少?
(3)饭后,姐姐洗碗,妹妹把姐姐洗过的碗一个一个地放进碗橱摞成一摞。一共有n个不同的碗,洗前也是摞成一摞的,也许因为小妹贪玩而使碗拿进碗橱不及时,姐姐则把洗过的碗摞在旁边,问:小妹摞起的碗有多少种可能的方式?
最终结果:C(2n,n)-C(2n,n+1)
n个元素进栈,共有多少种出栈顺序?的更多相关文章
- n个元素的入栈顺序有多少种出栈顺序?
问题:w1.w2.w3.w4.w5,5个元素将会按顺序入栈,求出栈顺序有多少种情况. 先写一下结论方便记忆: 1个元素:1种 2个元素:2种 3个元素:5种 4个元素:14种 5个元素:42种 简单的 ...
- Catalan数与出栈顺序个数,Java编程模拟
问题描述: 队列中有从1到7(由小到大排列)的7个整数,问经过一个整数栈后,出栈的所有排列数有多少?如果整数栈的容量是4(栈最多能容纳4个整数),那么出栈的排列数又是多少? 分析:对于每一个数字i, ...
- 问题-栈S最多能容纳4个元素,现有6个元素按A、B、C、D、E、F顺序进栈,问可能的出栈顺序。
住栈的特性:对于取出栈内元素每次只能从栈顶开始取(后进先出(栈满时,只能先出后进)) 由于栈内只能容纳4个元素: 所以 E F不可能第一个出栈: 当栈内少于四个元素时 既可以选择进栈,也可以选择出栈 ...
- N个数依次入栈,出栈顺序有多少种
题目:N个数依次入栈,出栈顺序有多少种? 首先介绍一下卡特兰数:卡特兰数前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 2 ...
- [实战演练]Intel面试题目 - 进栈出栈顺序问题
电话面试中写C++,逻辑比较清楚的一个题目,一紧张就不能好好地写下来,漏洞百出.以前经常在完善的编译环境中写代码,换了一个白板子上写反而写的不通顺了,犯了一些基础错误,比如stack中的首个元素是to ...
- N个数依次入栈,出栈顺序有多少种?
对于每一个数来说,必须进栈一次.出栈一次.我们把进栈设为状态‘1’,出栈设为状态‘0’.n个数的所有状态对应n个1和n个0组成的2n位二进制数.由于等待入栈的操作数按照1‥n的顺序排列.入栈的操作数b ...
- poj 1363 Rails in PopPush City &&【求堆栈中合法出栈顺序次数】
问题如下: 问题 B: Rails 时间限制: Sec 内存限制: MB 提交: 解决: [提交][状态][讨论版] 题目描述 There is a famous railway station in ...
- 出栈顺序 与 卡特兰数(Catalan)的关系
一,问题描述 给定一个以字符串形式表示的入栈序列,请求出一共有多少种可能的出栈顺序?如何输出所有可能的出栈序列? 比如入栈序列为:1 2 3 ,则出栈序列一共有五种,分别如下:1 2 3.1 3 2 ...
- YTU 3002: 出栈顺序(栈和队列)
3002: 出栈顺序(栈和队列) 时间限制: 1 Sec 内存限制: 128 MB 提交: 80 解决: 20 题目描述 给出一个入栈序列,和一个出栈序列,判断该出栈序列是否正确. 输入 输入包含 ...
随机推荐
- jQuery1.11源码分析(10)-----Callbacks模块
Callbacks模块实质上就是一个回调函数队列(当然吹得很牛逼..比如“提供了一种强大的方法来管理回调函数队列”),之所以介绍它是因为后面的Derferred模块基于它. Callbacks生成时接 ...
- odbc错误信息一览表
ODBC 错误信息 根据 X/Open 和 SQL Access Group SQL CAE 规范 (1992) 所进行的定义,SQLERROR 返回 SQLSTATE 值.SQLSTATE 值是包含 ...
- 【风雪之隅】写在PHP7发布之际一些话 2015-12-02
做开源也有4,5年的时间了,从最初的 Yaf,到今天的 PHP7,我参与的项目越来越多,使用我代码的用户也越来越多,明天就要发布的PHP7,绝对是我从事开源以来的一个最重要里程碑,我应该纪念一下今天, ...
- 删除/var/lib/docker
FATA[0000] Get http:///var/run/docker.sock/v1.18/containers/json?all=1: dial unix /var/run/docker.so ...
- UVa 11462 Age Sort
解题报告:给若干个居民的年龄排序,年龄的范围在1到100之间,输入的总人数在0到200W.这题要注意的输入的文件约有25MB,而内存限制为2MB,所以如果人数是像200W这样多的话,甚至都不能把它们都 ...
- ios中的category与extension
http://blog.csdn.net/haishu_zheng/article/details/12873151 category和extension用来做类扩展的,可以对现有类扩展功能或者修 ...
- notepad正则表达式
文件名称匹配 文件名称: boost_chrono-vc100-mt-1_49.dll 对应的notepad正则表达式: \w*_\w*-\w*-\w*-\w*-\w*.dll 移除空行 查找目标: ...
- lvs之nat技术的学习与实践
lvs nat 服务器搭建 1.配置三个虚拟机.一台用于做lvs 两台用于做web server 进行测试 (lvs服务器要配备两块网卡); lvs 服务器 两块网卡 分别为vmnet1 vm ...
- C#装箱和拆箱(值类型和引用类型之间的转换)
面向对象编程中,封箱指把非对象类型的数值或数据,包装成对象类型反之,拆箱指把对象类型拆成非对象的数值或数据. 例子:定义一个Circle 类 class Circle { double radius; ...
- HTML5 自制本地网页视频播放器
HTML5初试:本地视频用网页打开啦半个广告都可以没有,看来暴风什么的快要淘汰了. 视频格式还是有要求的,看来要备一个转码器. 格式 IE Firefox Opera Chrome Safari Og ...