http://poj.org/problem?id=2187

显然直径在凸包上(黑书上有证明)。(然后这题让我发现我之前好几次凸包的排序都错了QAQ只排序了x轴。。。。。没有排序y轴。。

然后本题数据水,暴力也能过。。。

(之前一直以为距离是单增的,其实并不是,应该是三角形面积单增...)

考虑旋转卡壳

一篇好的文章:http://www.cnblogs.com/Booble/archive/2011/04/03/2004865.html

首先对踵点就是两条平行线夹紧凸包的两个点(或者3个点或4个点,平行线过两个点情况,凸包去掉三点共线)时的点对,可以证明对踵点对最多只有3N/2个

首先卡住一点-两点(即边)可以等效于卡主一点-一点(前边的点),所以我们只需要找边的前一个点的对踵点即可。

性质1:对踵点对之间的距离最大

证明:黑书上有...

因此我们只需要枚举每条边,找出对应的对踵点(用叉积求面积来找,这条边与其它点的面积是单峰的,然后往后递推决策是单调不降的)

性质2:当枚举边按序枚举时,对踵点的位置单增

证明:不会QAQ似乎黑书上也有?

这就提供了一个很好的性质,即我们枚举边时维护一下对踵点的位置即可,那么查找对踵点的复杂度均摊$O(n)$

性质3:每个点的对踵点不一定只有1个

证明:显然吧。。。

由于性质3的存在,我们考虑是否我们枚举边找到第一个对踵点就更新的算法会出现问题?

答案是不会。

因为我们枚举边时已经遍历了所有点,因此遗漏的对踵点的距离总是会计算到

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <vector>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=50005;
struct dat { int x, y; }a[N], b[N]; int cha(const dat &a, const dat &b, const dat &c) {
static int x1, x2, y1, y2;
x1=a.x-c.x, x2=b.x-c.x, y1=a.y-c.y, y2=b.y-c.y;
return x1*y2-x2*y1;
}
int n;
bool cmp(const dat &a, const dat &b) { return a.x==b.x?a.y<b.y:a.x<b.x; }
void tu() {
sort(a+1, a+1+n, cmp);
int top=0;
for1(i, 1, n) {
while(top>1 && cha(a[i], b[top], b[top-1])>=0) --top;
b[++top]=a[i];
}
int k=top;
for3(i, n-1, 1) {
while(top>k && cha(a[i], b[top], b[top-1])>=0) --top;
b[++top]=a[i];
}
if(n>1) --top;
n=top;
}
int sqr(const int x) { return x*x; }
int dis(const dat &a, const dat &b) { return sqr(a.x-b.x)+sqr(a.y-b.y); } int main() {
read(n);
for1(i, 1, n) read(a[i].x), read(a[i].y);
tu();
int ans=0;
b[n+1]=b[1];
int j=2;
for1(i, 1, n) {
while(cha(b[i+1], b[j+1], b[i])>cha(b[i+1], b[j], b[i])) j=j%n+1;
ans=max(ans, dis(b[i], b[j]));
}
printf("%d\n", ans);
return 0;
}

  


Description

Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest, earning the title 'Miss Cow World'. As a result, Bessie will make a tour of N (2 <= N <= 50,000) farms around the world in order to spread goodwill between farmers and their cows. For simplicity, the world will be represented as a two-dimensional plane, where each farm is located at a pair of integer coordinates (x,y), each having a value in the range -10,000 ... 10,000. No two farms share the same pair of coordinates.

Even though Bessie travels directly in a straight line between pairs of farms, the distance between some farms can be quite large, so she wants to bring a suitcase full of hay with her so she has enough food to eat on each leg of her journey. Since Bessie refills her suitcase at every farm she visits, she wants to determine the maximum possible distance she might need to travel so she knows the size of suitcase she must bring.Help Bessie by computing the maximum distance among all pairs of farms.

Input

* Line 1: A single integer, N

* Lines 2..N+1: Two space-separated integers x and y specifying coordinate of each farm

Output

* Line 1: A single integer that is the squared distance between the pair of farms that are farthest apart from each other. 

Sample Input

4
0 0
0 1
1 1
1 0

Sample Output

2

Hint

Farm 1 (0, 0) and farm 3 (1, 1) have the longest distance (square root of 2) 

Source

【POJ】2187 Beauty Contest(旋转卡壳)的更多相关文章

  1. poj 2187:Beauty Contest(旋转卡壳)

    Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 32708   Accepted: 10156 Description Bes ...

  2. poj 2187 Beauty Contest——旋转卡壳

    题目:http://poj.org/problem?id=2187 学习材料:https://blog.csdn.net/wang_heng199/article/details/74477738 h ...

  3. poj 2187 Beauty Contest , 旋转卡壳求凸包的直径的平方

    旋转卡壳求凸包的直径的平方 板子题 #include<cstdio> #include<vector> #include<cmath> #include<al ...

  4. poj 2187 Beauty Contest —— 旋转卡壳

    题目:http://poj.org/problem?id=2187 学习资料:https://blog.csdn.net/wang_heng199/article/details/74477738 h ...

  5. poj 2187 Beauty Contest(凸包求解多节点的之间的最大距离)

    /* poj 2187 Beauty Contest 凸包:寻找每两点之间距离的最大值 这个最大值一定是在凸包的边缘上的! 求凸包的算法: Andrew算法! */ #include<iostr ...

  6. poj 2187 Beauty Contest (凸包暴力求最远点对+旋转卡壳)

    链接:http://poj.org/problem?id=2187 Description Bessie, Farmer John's prize cow, has just won first pl ...

  7. POJ 2187 - Beauty Contest - [凸包+旋转卡壳法][凸包的直径]

    题目链接:http://poj.org/problem?id=2187 Time Limit: 3000MS Memory Limit: 65536K Description Bessie, Farm ...

  8. POJ 2187 Beauty Contest【旋转卡壳求凸包直径】

    链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  9. POJ 2187 Beauty Contest(凸包,旋转卡壳)

    题面 Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest, earning the ...

  10. POJ 2187 Beauty Contest(凸包+旋转卡壳)

    Description Bessie, Farmer John's prize cow, has just won first place in a bovine beauty contest, ea ...

随机推荐

  1. 利用zabbix监控某个目录大小

    近期,因为JMS的消息堆积导致ApacheMQ频率故障(消息没有被消费掉,导致其数据库达到1.2G,JMS此时直接挂掉),很是郁闷!刚好自 己在研究zabbix.既然zabbix如此强大,那么它可以监 ...

  2. linux 下如何查看和踢除正在登陆的其它用户 ==>Linux下用于查看系统当前登录用户信息的4种方法

    在linux系统中用pkill命令踢出在线登录用户 由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍 所以需要有时踢出指定的用户 1/#who   查出当前有那些终端登录(用 ...

  3. Redis系列-远程连接redis并给redis加锁

    假设两台redis服务器,ip分别为:192.168.1.101和192.168.1.103,如何在101上通过redis-cli访问103上的redis呢?在远程连接103之前,先讲下redis-c ...

  4. Subarray Sum & Maximum Size Subarray Sum Equals K

    Subarray Sum Given an integer array, find a subarray where the sum of numbers is zero. Your code sho ...

  5. Html5 History API解析

    浏览器前进与回退操作 在传统的浏览器中我们只能通过调用window.history对象的 forward() . back() 或 go(number|url) 方法来进行页面的前进.回退或跳转到某一 ...

  6. 【python】any()和all()

    any(iterable) 版本:该函数适用于2.5以上版本,兼容python3版本. 说明:如果iterable的任一元素不为0.''.False,返回True. all(iterable) 说明: ...

  7. Netbeans快捷键

    一.常用快捷键:1.在文件中查找指定内容 Ctrl+F2.在文件中替换指定内容 Ctrl+H3.在整个项目中查找指定内容 Ctrl+Shift+f4.自动复制整行代码 Ctrl+Shift+上/下方向 ...

  8. VS2010设置C++包含目录和库目录

    视图-属性管理器-随便选择一个项目例如MyProject-Debug|Win32-Microsoft.Cpp.Win32.user-右键“属性”-VC++目录 Release同理

  9. 优秀前端工程师应该掌握的内容(转自:github)

    程序 标准规范 ECMAScript HTTP 知识储备 作用域/闭包 数据结构 算法 编程范式 函数式 面向对象 基于原型 面向方面 设计模式 软件架构 MVC MVVM 安全 XSS CSRF 富 ...

  10. 二、JavaScript语言--JS基础--JavaScript进阶篇--JS基础语法

    1.变量 定义:从字面上看,变量是可变的量:从编程角度讲,变量是用于存储某种/某些数值的存储器.我们可以把变量看做一个盒子,盒子用来存放物品,物品可以是衣服.玩具.水果...等. 命名:变量名字可以任 ...