http://www.spoj.com/problems/SUBLEX/

后缀自动机系列完成QAQ。。。撒花。。明天or今晚写个小结?

首先得知道:后缀自动机中,root出发到任意一个状态的路径对应一个子串,而且不重复。(原因似乎是逆序后缀树?

所以我们在自动机上预处理每一个状态的子串数目,然后从小到大枚举字符。

子串数目可以这样预处理出:s[x]=sum{s[y]}+1, y是x出发的下一个点,意思就是说,以x开头的子串有那么多个(即将孩子的所有子串前边都加上x),然后x单独算一个子串。

然后查找的时候从root出发(你可以这样想,因为root的right值包含了所有right,即root有所有后缀的r下标,所以只需要找最小的开头即可,然后转移后同理。

然后如果当前的转移的状态y,有s[y]>=k,那么说明子串在y的后缀里边,那么--k并且打印字符y后转移到y状态。(--k是因为我们转移的定义)

反之,如果s[y]<k, k-=s[y]

然后就行了。。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } struct sam {
static const int N=250005;
int c[N][26], l[N], f[N], root, last, cnt, sz[N], o[N];
sam() { cnt=0; root=last=++cnt; }
void add(int x) {
int now=last, a=++cnt; last=a;
l[a]=l[now]+1;
for(; now && !c[now][x]; now=f[now]) c[now][x]=a;
if(!now) f[a]=root;
else {
int q=c[now][x];
if(l[q]==l[now]+1) f[a]=q;
else {
int b=++cnt;
memcpy(c[b], c[q], sizeof c[q]);
l[b]=l[now]+1;
f[b]=f[q];
f[q]=f[a]=b;
for(; now && c[now][x]==q; now=f[now]) c[now][x]=b;
}
}
}
void build(char *s) {
int len=strlen(s);
rep(i, len) add(s[i]-'a');
for1(i, 1, cnt) sz[l[i]]++;
for1(i, 1, len) sz[i]+=sz[i-1];
for1(i, 1, cnt) o[sz[l[i]]--]=i;
for1(i, 0, len) sz[i]=0;
for1(i, 1, cnt) sz[i]=1;
for3(i, cnt, 1) {
int p=o[i];
rep(x, 26) sz[p]+=sz[c[p][x]];
}
}
void getans(int k) {
int now=root;
while(k) {
rep(x, 26) if(c[now][x]) {
int y=c[now][x];
if(sz[y]>=k) { putchar('a'+x); --k; now=y; break; }
else k-=sz[y];
}
}
puts("");
}
}a; const int N=150005;
char s[N];
int main() {
scanf("%s", s);
a.build(s);
int q=getint();
while(q--) a.getans(getint());
return 0;
}

  


Little Daniel loves to play with strings! He always finds different ways to have fun with strings! Knowing that, his friend Kinan decided to test his skills so he gave him a string S and asked him Qquestions of the form:

If all distinct substrings of string S were sorted lexicographically, which one will be the K-thsmallest?

After knowing the huge number of questions Kinan will ask, Daniel figured out that he can't do this alone. Daniel, of course, knows your exceptional programming skills, so he asked you to write him a program which given S will answer Kinan's questions.

Example:

S = "aaa" (without quotes)
substrings of S are "a" , "a" , "a" , "aa" , "aa" , "aaa". The sorted list of substrings will be:
"a", "aa", "aaa".

Input

In the first line there is Kinan's string S (with length no more than 90000 characters). It contains only small letters of English alphabet. The second line contains a single integer Q (Q <= 500) , the number of questions Daniel will be asked. In the next Q lines a single integer K is given (0 < K < 2^31).

Output

Output consists of Q lines, the i-th contains a string which is the answer to the i-th asked question.

Example

Input:
aaa
2
2
3 Output:
aa
aaa

【SPOJ】7258. Lexicographical Substring Search(后缀自动机)的更多相关文章

  1. spoj 7258 Lexicographical Substring Search (后缀自动机)

    spoj 7258 Lexicographical Substring Search (后缀自动机) 题意:给出一个字符串,长度为90000.询问q次,每次回答一个k,求字典序第k小的子串. 解题思路 ...

  2. SPOJ 7258 Lexicographical Substring Search [后缀自动机 DP]

    题意:给一个长度不超过90000的串S,每次询问它的所有不同子串中,字典序第K小的,询问不超过500个. 第一道自己做的1A的SAM啦啦啦 很简单,建SAM后跑kth就行了 也需要按val基数排序倒着 ...

  3. SPOJ SUBLEX - Lexicographical Substring Search 后缀自动机 / 后缀数组

    SUBLEX - Lexicographical Substring Search Little Daniel loves to play with strings! He always finds ...

  4. ●SPOJ 7258 Lexicographical Substring Search

    题链: http://www.spoj.com/problems/SUBLEX/题解: 后缀自动机. 首先,因为相同的子串都被存在了自动机的同一个状态里面,所以这就很自然的避免了重复子串的问题. 然后 ...

  5. SPOJ 7258 Lexicographical Substring Search(后缀自动机)

    [题目链接] http://www.spoj.com/problems/SUBLEX/ [题目大意] 给出一个字符串,求其字典序排名第k的子串 [题解] 求出sam上每个节点被经过的次数,然后采用权值 ...

  6. SPOJ Lexicographical Substring Search 后缀自动机

    给你一个字符串,然后询问它第k小的factor,坑的地方在于spoj实在是太慢了,要加各种常数优化,字符集如果不压缩一下必t.. #pragma warning(disable:4996) #incl ...

  7. SPOJ SUBLEX Lexicographical Substring Search - 后缀数组

    题目传送门 传送门I 传送门II 题目大意 给定一个字符串,多次询问它的第$k$大本质不同的子串,输出它. 考虑后缀Trie.依次考虑每个后缀新增的本质不同的子串个数,显然,它是$n - sa[i] ...

  8. SPOJ 7258 Lexicographical Substring Search

    Little Daniel loves to play with strings! He always finds different ways to have fun with strings! K ...

  9. SP7258 SUBLEX - Lexicographical Substring Search - 后缀自动机,dp

    给定一个字符串,求本质不同排名第k小的子串 Solution 后缀自动机上每条路径对应一个本质不同的子串 按照 TRANS 图的拓扑序,DP 计算出每个点发出多少条路径 (注意区别 TRANS 图的拓 ...

  10. SPOJ7258 SUBLEX - Lexicographical Substring Search(后缀自动机)

    Little Daniel loves to play with strings! He always finds different ways to have fun with strings! K ...

随机推荐

  1. HDU 2955 Robberies 背包概率DP

    A - Robberies Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  2. 细微之处:比较两种CSS清除浮动的兼容

    http://www.cnblogs.com/bienfantaisie/archive/2011/05/27/2059597.html 清除浮动是连续浮动元素之后的必备工作,在工作中我做到需要清除浮 ...

  3. 全面解释StringBuilder、StringBuffer和String的关系

    1. String 类    String的值是不可变的,这就导致每次对String的操作都会生成新的String对象,不仅效率低下,而且大量浪费有限的内存空间.   String a = " ...

  4. Count Primes

    Count the number of prime numbers less than a non-negative number, n public int countPrimes(int n) { ...

  5. 1.7 逆序数与归并排序[inversion pairs by merge sort]

    [本文链接] http://www.cnblogs.com/hellogiser/p/inversion-pairs-by-merge-sort.html [题目] 编程之美1.7光影切割问题可以进一 ...

  6. 24.栈的push和pop序列[StackPushPopSequence]

    [题目] 输入两个整数序列.其中一个序列表示栈的push顺序,判断另一个序列有没有可能是对应的pop顺序.为了简单起见,我们假设push序列的任意两个整数都是不相等的. 比如输入的push序列是1.2 ...

  7. Java删除文件夹和文件

    转载自:http://blog.163.com/wu_huiqiang@126/blog/static/3718162320091022103144516/ 以前在javaeye看到过关于Java操作 ...

  8. July 15th, Week 29th Friday, 2016

    A book is a gift that you can open again and again. 书是你可以一次又一次打开的礼物. Some gifts are born with you, a ...

  9. How to Optimize Battery Health?

    1. click on the battery icon from taskbar next to the date and time. 2. click "More power optio ...

  10. linux安装gcc

    方法:输入命令: :(1) :yum -y install gcc (2) yum -y install gcc-c++(3)yum install make 我的再输入  yum -y instal ...