转载请注明来源,并包含相关链接。http://www.cnblogs.com/yjiyjige/p/3263858.html

网上有很多讲解KMP算法的博客,我就不浪费时间再写一份了。直接推荐一个当初我入门时看的博客吧:
http://www.cnblogs.com/yjiyjige/p/3263858.html
这位同学用详细的图文模式讲解了KMP算法,非常适合入门。
----------------------------------------------------------------------------------------------

KMP的next数组求法是很不容易搞清楚的一部分,也是最重要的一部分。我这篇文章就以我自己的感悟来慢慢推导一下吧!保证你看完过后是知其然,也知其所以然。

如果你还不知道KMP是什么,请先阅读上面的链接,先搞懂KMP是要干什么。
下面我们就来说说KMP的next数组求法。
KMP的next数组简单来说,假设有两个字符串,一个是待匹配的字符串strText,一个是要查找的关键字strKey。现在我们要在strText中去查找是否包含strKey,用i来表示strText遍历到了哪个字符,用j来表示strKey匹配到了哪个字符。
如果是暴力的查找方法,当strText[i]和strKey[j]匹配失败的时候,i和j都要回退,然后从i-j的下一个字符开始重新匹配。
而KMP就是保证i永远不回退,只回退j来使得匹配效率有所提升。它用的方法就是利用strKey在失配的j为之前的成功匹配的子串的特征来寻找j应该回退的位置。而这个子串的特征就是前后缀的相同程度。
所以next数组其实就是查找strKey中每一位前面的子串的前后缀有多少位匹配,从而决定j失配时应该回退到哪个位置。

我知道上面那段废话很难懂,下面我们看一个彩图:

这个图画的就是strKey这个要查找的关键字字符串。假设我们有一个空的next数组,我们的工作就是要在这个next数组中填值。
下面我们用数学归纳法来解决这个填值的问题。
这里我们借鉴数学归纳法的三个步骤(或者说是动态规划?):
1、初始状态
2、假设第j位以及第j位之前的我们都填完了
3、推论第j+1位该怎么填

初始状态我们稍后再说,我们这里直接假设第j位以及第j位之前的我们都填完了。也就是说,从上图来看,我们有如下已知条件:
next[j] == k;
next[k] == 绿色色块所在的索引;
next[绿色色块所在的索引] == 黄色色块所在的索引;
这里要做一个说明:图上的色块大小是一样的(没骗我?好吧,请忽略色块大小,色块只是代表数组中的一位)。

我们来看下面一个图,可以得到更多的信息:

1.由"next[j] == k;"这个条件,我们可以得到A1子串 == A2子串(根据next数组的定义,前后缀那个)。

2.由"next[k] == 绿色色块所在的索引;"这个条件,我们可以得到B1子串 == B2子串。

3.由"next[绿色色块所在的索引] == 黄色色块所在的索引;"这个条件,我们可以得到C1子串 == C2子串。

4.由1和2(A1 == A2,B1 == B2)可以得到B1 == B2 == B3。

5.由2和3(B1 == B2, C1 == C2)可以得到C1 == C2 == C3。

6.B2 == B3可以得到C3 == C4 == C1 == C2

上面这个就是很简单的几何数学,仔细看看都能看懂的。我这里用相同颜色的线段表示完全相同的子数组,方便观察。

接下来,我们开始用上面得到的条件来推导如果第j+1位失配时,我们应该填写next[j+1]为多少?

next[j+1]即是找strKey从0到j这个子串的最大前后缀:

#:(#:在这里是个标记,后面会用)我们已知A1 == A2,那么A1和A2分别往后增加一个字符后是否还相等呢?我们得分情况讨论:

(1)如果str[k] == str[j],很明显,我们的next[j+1]就直接等于k+1。

  用代码来写就是next[++j] = ++k;

(2)如果str[k] != str[j],那么我们只能从已知的,除了A1,A2之外,最长的B1,B3这个前后缀来做文章了。

那么B1和B3分别往后增加一个字符后是否还相等呢?

由于next[k] == 绿色色块所在的索引,我们先让k = next[k],把k挪到绿色色块的位置,这样我们就可以递归调用"#:"标记处的逻辑了。

由于j+1位之前的next数组我们都是假设已经求出来了的,因此,上面这个递归总会结束,从而得到next[j+1]的值。

我们唯一欠缺的就是初始条件了:

next[0] = -1,  k = -1, j = 0

另外有个特殊情况是k为-1时,不能继续递归了,此时next[j+1]应该等于0,即把j回退到首位。

即 next[j+1] = 0; 也可以写成next[++j] = ++k;

public static int[] getNext(String ps)
{
char[] strKey = ps.toCharArray();
int[] next = new int[strKey.length]; // 初始条件
int j = 0;
int k = -1;
next[0] = -1; // 根据已知的前j位推测第j+1位
while (j < strKey.length - 1)
{
if (k == -1 || strKey[j] == strKey[k])
{
next[++j] = ++k;
}
else
{
k = next[k];
}
} return next;
}

现在再看这段代码应该没有任何问题了吧。

优化:

细心的朋友应该发现了,上面有这样一句话:

(1)如果str[k] == str[j],很明显,我们的next[j+1]就直接等于k+1。用代码来写就是next[++j] = ++k;

可是我们知道,第j+1位是失配了的,如果我们回退j后,发现新的j(也就是此时的++k那位)跟回退之前的j也相等的话,必然也是失配。所以还得继续往前回退。

public static int[] getNext(String ps)
{
char[] strKey = ps.toCharArray();
int[] next = new int[strKey.length]; // 初始条件
int j = 0;
int k = -1;
next[0] = -1; // 根据已知的前j位推测第j+1位
while (j < strKey.length - 1)
{
if (k == -1 || strKey[j] == strKey[k])
{
// 如果str[j + 1] == str[k + 1],回退后仍然失配,所以要继续回退
if (str[j + 1] == str[k + 1])
{
next[++j] = next[++k];
}
else
{
next[++j] = ++k;
}
}
else
{
k = next[k];
}
} return next;
}

好了,自此KMP的next求法全部讲解完毕。欢迎大家指出文章的错误,我好更加完善它。

----------------------------------------------------------------------------------------------------------

下面说说面试的时候,给一个字符串,要你写出它的Next数组,应该怎么写:

-----------------------------------------------------------------------------

突然一想:next[i]不就是i位置匹配失败,该退回的位置吗,next【0】就是第一个匹配失败该退会的地方,按说第一个匹配失败应该继续匹配第一个 next[0] = 0才对,为什么是next[0] = -1呢,如果next[0] = 0就有一个问题,对于第0个匹配失败,然后又返回到第0个,还是自己啊,所以陷入死循环,而next[0] = -1表示,理解成结束,当第0个匹配失败时候就已经结束不会再退回了,这一点在kmp完整的代码中有体现。 if ( j != -1 && x[i] != y[j] ) j = next[j], 当j= 0 的时候不匹配就结束了,不可能在退回了

k表示要退回的位置, next[i] = k;

----------------------------------------------------------------------------

①:先对每一位左边的子串求出最大前后缀串的长度,作为初始的Next数组,

②:因为第一位失配时需要移动i,因此赋值为-1

③:P[3] == A, Next[3] == 0, P[0] == A;  所以P[3] == P[0], (移动过去后还是失配,需要继续移动),优化Next[3]为Next[0],即-1

④:同理优化Next[10]为Next[0],即-1

⑤:同理优化P[14],P[15],P[16]

【转】KMP算法的更多相关文章

  1. 简单有效的kmp算法

    以前看过kmp算法,当时接触后总感觉好深奥啊,抱着数据结构的数啃了一中午,最终才大致看懂,后来提起kmp也只剩下“奥,它是做模式匹配的”这点干货.最近有空,翻出来算法导论看看,原来就是这么简单(先不说 ...

  2. KMP算法

    KMP算法是字符串模式匹配当中最经典的算法,原来大二学数据结构的有讲,但是当时只是记住了原理,但不知道代码实现,今天终于是完成了KMP的代码实现.原理KMP的原理其实很简单,给定一个字符串和一个模式串 ...

  3. 萌新笔记——用KMP算法与Trie字典树实现屏蔽敏感词(UTF-8编码)

    前几天写好了字典,又刚好重温了KMP算法,恰逢遇到朋友吐槽最近被和谐的词越来越多了,于是突发奇想,想要自己实现一下敏感词屏蔽. 基本敏感词的屏蔽说起来很简单,只要把字符串中的敏感词替换成"* ...

  4. KMP算法实现

    链接:http://blog.csdn.net/joylnwang/article/details/6778316 KMP算法是一种很经典的字符串匹配算法,链接中的讲解已经是很明确得了,自己按照其讲解 ...

  5. 数据结构与算法JavaScript (五) 串(经典KMP算法)

    KMP算法和BM算法 KMP是前缀匹配和BM后缀匹配的经典算法,看得出来前缀匹配和后缀匹配的区别就仅仅在于比较的顺序不同 前缀匹配是指:模式串和母串的比较从左到右,模式串的移动也是从 左到右 后缀匹配 ...

  6. 扩展KMP算法

    一 问题定义 给定母串S和子串T,定义n为母串S的长度,m为子串T的长度,suffix[i]为第i个字符开始的母串S的后缀子串,extend[i]为suffix[i]与字串T的最长公共前缀长度.求出所 ...

  7. 字符串模式匹配之KMP算法图解与 next 数组原理和实现方案

    之前说到,朴素的匹配,每趟比较,都要回溯主串的指针,费事.则 KMP 就是对朴素匹配的一种改进.正好复习一下. KMP 算法其改进思想在于: 每当一趟匹配过程中出现字符比较不相等时,不需要回溯主串的 ...

  8. 算法:KMP算法

    算法:KMP排序 算法分析 KMP算法是一种快速的模式匹配算法.KMP是三位大师:D.E.Knuth.J.H.Morris和V.R.Pratt同时发现的,所以取首字母组成KMP. 少部分图片来自孤~影 ...

  9. BF算法与KMP算法

    BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符:若不相等,则比较S的 ...

  10. KMP算法-next函数求解

    KMP函数求解:一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为KMP算法.KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串 ...

随机推荐

  1. HTML5-WebSocket技术学习(2)

    上一篇介绍了websocket的基本用法.这篇介绍websocket的一个框架: socket.io socket.io是一个既可以用在客户端又可以用在服务器端的框架. 本篇介绍socket.io在客 ...

  2. 课程2——变量修饰关键字

    声明:本系列随笔主要用于记录c语言的常备知识点,不能保证所有知识正确性,欢迎大家阅读.学习.批评.指正!!你们的鼓励是我前进的动力.严禁用于私人目的.转载请注明出处:http://www.cnblog ...

  3. js如何判断一组数字是否连续,得到一个临时数组[[3,4],[13,14,15],[17],[20],[22]];

    var arrange = function(arr){ var result = [], temp = []; arr.sort(function(source, dest){ return sou ...

  4. pandas 透视表 pivot_table

    The function pandas.pivot_table can be used to create spreadsheet-style pivot tables. It takes a num ...

  5. [CareerCup] 7.4 Implement Multiply Subtract and Divide 实现乘法减法和除法

    7.4 Write methods to implement the multiply, subtract, and divide operations for integers. Use only ...

  6. iOS开发系列--录音

    在AVFoundation框架中还要一个AVAudioRecorder类专门处理录音操作,它同样支持多种音频格式.与AVAudioPlayer类似,你完全可以将它看成是一个录音机控制类,下面是常用的属 ...

  7. Linux 安装配置Subversion edge

    2014-04-14:修正部分描述.添加JAVA_HOME报错处理步骤.添加配置sudoers 系统:CentOS 5.8 ,6.4 Subversion版本:Subversion Edge 4.0. ...

  8. valueOf和toString

    有一道经典的题目: var add = function() {___}; console.log(add(3)(4)(5)); // 输出60 题目要求能无限相乘,请补充add函数. 首先很显然,a ...

  9. IT男的”幸福”生活"续8

    有段时间没写了,还是有点怀念的.   生活不记录下,怕真地会忘.. 以往的种种,时时刻刻回荡在我的脑海中,  最近看着孩子生活照, 猛得回首我便回了到了 续8. …… 坐在回去的公交车上,看着前面两M ...

  10. session和cookie的前后的操作

    1. // sign outexports.signout = function (req, res, next) { req.session.destroy(); res.clearCookie(c ...