FAIndividual.py

 import numpy as np
import ObjFunction class FAIndividual: '''
individual of firefly algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for firefly algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

FA.py

 import numpy as np
from FAIndividual import FAIndividual
import random
import copy
import matplotlib.pyplot as plt class FireflyAlgorithm: '''
The class for firefly algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
param: algorithm required parameters, it is a list which is consisting of [beta0, gamma, alpha]
'''
self.sizepop = sizepop
self.MAXGEN = MAXGEN
self.vardim = vardim
self.bound = bound
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2))
self.params = params def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = FAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluate(self):
'''
evaluation of the population fitnesses
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
evolution process of firefly algorithm
'''
self.t = 0
self.initialize()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while (self.t < self.MAXGEN - 1):
self.t += 1
self.move()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1])) print("Optimal function value is: %f; " %
self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def move(self):
'''
move the a firefly to another brighter firefly
'''
for i in xrange(0, self.sizepop):
for j in xrange(0, self.sizepop):
if self.fitness[j] > self.fitness[i]:
r = np.linalg.norm(
self.population[i].chrom - self.population[j].chrom)
beta = self.params[0] * \
np.exp(-1 * self.params[1] * (r ** 2))
# beta = 1 / (1 + self.params[1] * r)
# print beta
self.population[i].chrom += beta * (self.population[j].chrom - self.population[
i].chrom) + self.params[2] * np.random.uniform(low=-1, high=1, size=self.vardim)
for k in xrange(0, self.vardim):
if self.population[i].chrom[k] < self.bound[0, k]:
self.population[i].chrom[k] = self.bound[0, k]
if self.population[i].chrom[k] > self.bound[1, k]:
self.population[i].chrom[k] = self.bound[1, k]
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def printResult(self):
'''
plot the result of the firefly algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Firefly Algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
fa = FA(60, 25, bound, 200, [1.0, 0.000001, 0.6])
fa.solve()

ObjFunction见简单遗传算法-python实现

萤火虫算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. HDU 2487 Ugly Windows

    递归求解,代码不太好看,是2013年7月写的 代码: #include<stdio.h> #include<iostream> #include<string.h> ...

  2. java14-9 Doteformat的练习

    需求: 键盘录入出生年月日,计算出距离现在已经生活了几天 分析: A:创建键盘录入固定模式的字符串 B:计算步骤: a:把输入进来的字符串格式化成日期 b:获取现在的日期,减去格式化后的日期 c:把得 ...

  3. VC2010中去掉红绝下划线

    1. 在VC2010 的tools/中找到editior. 已经找到c/c++->advanced->IntelliSense->Disable IntelliSence->T ...

  4. POJ 1125 Stockbroker Grapevine

    Stockbroker Grapevine Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 33141   Accepted: ...

  5. ASP.NET MVC3 Model验证总结(转)

    推荐:   ASP.NET MVC的Model元数据与Model模板:预定义模板 http://www.cnblogs.com/artech/archive/2012/05/02/model-meta ...

  6. PPPOE原理及部署

    PPPOE 1,一个广播域 2,panabit可以做小区项目 http://edu.51cto.com/course/course_id-3849.html   Adsl的介绍 所谓非对称,即上下行速 ...

  7. 后盾网VIP美团网开发(基于HDPHP)(全套38课)

    教程简介 本教程由后盾网讲解,共40节,主要介绍了美团网的开发,从需求分析出发,对商铺的建立.购物流程的构建及订单处理等都做了详细的介绍,非常适合做电子商务开发的朋友和同学参考学习使用,完整教程可以在 ...

  8. [CareerCup] 13.10 Allocate a 2D Array 分配一个二维数组

    13.10 Write a function in C called my2DAlloc which allocates a two-dimensional array. Minimize the n ...

  9. 20155224聂小益 - 我的技能与C语言学习

    20155224聂小益 - 我的技能与C语言学习 预备作业2 ● 你有什么技能比大多人(超过90%以上)更好? 我认为我可能有些技能身边有的人比较少有,但是要是超过90%以上我实在不敢保证.毕竟厉害的 ...

  10. 20145222黄亚奇《Java程序设计》实验五实验报告

    20145222 <Java程序设计>实验五实验报告 实验内容 1.掌握Socket程序的编写: 2.掌握密码技术的使用: 3.设计安全传输系统. 实验步骤 本次实验我的结对编程对象是20 ...