萤火虫算法-python实现
FAIndividual.py
import numpy as np
import ObjFunction class FAIndividual: '''
individual of firefly algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for firefly algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)
FA.py
import numpy as np
from FAIndividual import FAIndividual
import random
import copy
import matplotlib.pyplot as plt class FireflyAlgorithm: '''
The class for firefly algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
param: algorithm required parameters, it is a list which is consisting of [beta0, gamma, alpha]
'''
self.sizepop = sizepop
self.MAXGEN = MAXGEN
self.vardim = vardim
self.bound = bound
self.population = []
self.fitness = np.zeros((self.sizepop, 1))
self.trace = np.zeros((self.MAXGEN, 2))
self.params = params def initialize(self):
'''
initialize the population
'''
for i in xrange(0, self.sizepop):
ind = FAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluate(self):
'''
evaluation of the population fitnesses
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
evolution process of firefly algorithm
'''
self.t = 0
self.initialize()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
while (self.t < self.MAXGEN - 1):
self.t += 1
self.move()
self.evaluate()
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex])
self.avefitness = np.mean(self.fitness)
self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t, 0], self.trace[self.t, 1])) print("Optimal function value is: %f; " %
self.trace[self.t, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def move(self):
'''
move the a firefly to another brighter firefly
'''
for i in xrange(0, self.sizepop):
for j in xrange(0, self.sizepop):
if self.fitness[j] > self.fitness[i]:
r = np.linalg.norm(
self.population[i].chrom - self.population[j].chrom)
beta = self.params[0] * \
np.exp(-1 * self.params[1] * (r ** 2))
# beta = 1 / (1 + self.params[1] * r)
# print beta
self.population[i].chrom += beta * (self.population[j].chrom - self.population[
i].chrom) + self.params[2] * np.random.uniform(low=-1, high=1, size=self.vardim)
for k in xrange(0, self.vardim):
if self.population[i].chrom[k] < self.bound[0, k]:
self.population[i].chrom[k] = self.bound[0, k]
if self.population[i].chrom[k] > self.bound[1, k]:
self.population[i].chrom[k] = self.bound[1, k]
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def printResult(self):
'''
plot the result of the firefly algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Firefly Algorithm for function optimization")
plt.legend()
plt.show()
运行程序:
if __name__ == "__main__": bound = np.tile([[-600], [600]], 25)
fa = FA(60, 25, bound, 200, [1.0, 0.000001, 0.6])
fa.solve()
ObjFunction见简单遗传算法-python实现。
萤火虫算法-python实现的更多相关文章
- pageRank算法 python实现
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...
- 常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,, ...
- kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...
- KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
随机推荐
- POJ 2449 Remmarguts' Date --K短路
题意就是要求第K短的路的长度(S->T). 对于K短路,朴素想法是bfs,使用优先队列从源点s进行bfs,当第K次遍历到T的时候,就是K短路的长度. 但是这种方法效率太低,会扩展出很多状态,所以 ...
- YOU ARE MY SUNSHINE
/*you are sunshine, my only sunshine, you make me happy when skies are grey. you'll never know dear ...
- Flash Builder快捷键
代码助手:Ctrl+Space(简体中文操作系统是Alt+/)快速修正:Ctrl+1单词补全:Alt+/打开外部Java文档:Shift+F2 显示搜索对话框:Ctrl+H快速Outline:Ctrl ...
- java11-4 字符串的遍历以及字符串中各类字符的统计
1.需求:获取字符串中的每一个字符 分析: A:如何能够拿到每一个字符呢? char charAt(int index) B:我怎么知道字符到底有多少个呢? int length() publi ...
- win10自动更新彻底关闭
http://app.techweb.com.cn/wp/2016-10-24/2418646.shtml
- Gradle的HelloWorld
Gradle的脚本名为 build.gradle task hello{ doLast{ println("Hello World") } } 运行:gradle -q hell ...
- 微软职位内部推荐-Senior Development Engineer
微软近期Open的职位: Job Title: Senior Software Development Engineering Work Location: Suzhou, China Enterpr ...
- memcached缓存失效时的高并发访问问题解决
memcached一般用于在访问一些性能相对低下的数据接口时(如数据库),为了保证这些数据接口的稳定性,加上memcached以减少访问次数,保证这些数据接口的健壮性.一般memcached的数据都是 ...
- VBA的一些使用心得
VBA的知识比较零散,因此开一贴记录一下使用VBA时的一些方法和心得.主要针对Excel,参考在这里 1. Collection Class 大部分情况下,Collection Class是比数组(A ...
- Go视频教程整理
[Go Web基础]01博客项目设计 |Go视频教程|Go语言基础 http://www.tudou.com/programs/view/gXZb9tGNsGU/ [Go Web基础]02初窥 Web ...