L-99: Ninety-Nine Lisp Problems

列表处理类问题的解答,用Scheme实现,首先定义几个在后续解题中用到的公共过程:

; common procedure
(define (check-element xs f)
(call/cc (lambda (break)
(for-each (lambda (x) (if (f x) (break #t))) xs)
#f))) (define (foldl f init xs)
(define (iter xs acc)
(if (null? xs) acc
(iter (cdr xs) (f acc (car xs)))))
(iter xs init)) (define (foldr f init xs)
(define (iter xs acc)
(if (null? xs) acc
(iter (cdr xs) (f (car xs) acc))))
(iter (reverse xs) init)) (define (rep x n)
(define (iter result acc)
(if (= n acc) result
(iter (cons x result) (+ acc 1))))
(iter '() 0)) (define (swapf xs f)
(cond [(null? xs) '()]
[(not (pair? xs)) '()]
[(not (= (length xs) 2)) '()]
[else (list (f (car (cdr xs))) (f (car xs)))])) (define (element-at xs at)
(define (iter xs acc)
(cond [(null? xs) "idx out of range"]
[(= acc at) (car xs)]
[else (iter (cdr xs) (+ acc 1))]))
(iter xs 0))

P04 (*) Find the number of elements of a list.

(define (find xs x)
(if (check-element xs (lambda (e) (= e x))) x
(cons "can not find " x)))

P05 (*) Reverse a list.

(define (my-reverse xs) (foldl (lambda (acc x) (cons x acc)) '() xs))

P06 (*) Find out whether a list is a palindrome.

A palindrome can be read forward or backward; e.g. (x a m a x).

(define (palindrome xs) (equal? xs (my-reverse xs)))

P07 (**) Flatten a nested list structure.

Transform a list, possibly holding lists as elements into a `flat' list

by replacing each list with its elements (recursively).

Example:

(my-flatten '(a (b (c d) e)))

(A B C D E)

Hint: Use the predefined functions list and append.

(define (my-flatten xs)
(if (pair? xs) (foldr (lambda (x acc) (append (my-flatten x) acc)) '() xs)
(list xs)))

P08 (**) Eliminate consecutive duplicates of list elements.

If a list contains repeated elements they should be replaced with a single copy

of the element. The order of the elements should not be changed.

Example:

(compress '(a a a a b c c a a d e e e e))

(A B C A D E)

(define (compress xs)
(reverse (foldl (lambda (acc x) (if (or (null? acc) (not (eq? (car acc) x))) (cons x acc) acc)) '() xs)))

P09 (**) Pack consecutive duplicates of list elements into sublists.

If a list contains repeated elements they should be placed in separate sublists.

Example:

(pack '(a a a a b c c a a d e e e e))

((A A A A) (B) (C C) (A A) (D) (E E E E))

(define (pack xs)
(reverse (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)] ;记录前一个处理值
[snd (cadr acc)]) ;分组
(if (eq? fst x)
(let ([h (car snd)];当前正在处理的分组
[t (cdr snd)])
(list x (cons (cons x h) t))) ;x与前一个处理值一样,将x添加进当前分组即可
(list x (cons (list x) snd))))) ;x与前一个处理值不一样,创建一个新的x分组
'(#f ()) xs)))))

P10 (*) Run-length encoding of a list.

Use the result of problem P09 to implement the so-called run-length encoding data compression method.

Consecutive duplicates of elements are encoded as lists (N E) where N is the number of duplicates of the element E.

Example:

(encode '(a a a a b c c a a d e e e e))

((4 A) (1 B) (2 C) (2 A) (1 D)(4 E))

(define (encode xs)
(let ([p (pack xs)])
(foldr (lambda (x acc) (cons (list (length x) (car x)) acc)) '() p)))

P11 (*) Modified run-length encoding.

Modify the result of problem P10 in such a way that if an element has no duplicates it is simply copied

into the result list. Only elements with duplicates are transferred as (N E) lists.

Example:

(encode-modified '(a a a a b c c a a d e e e e))

((4 A) B (2 C) (2 A) D (4 E))

(define (encode-modified xs)
(let ([p (pack xs)])
(foldr (lambda (x acc)
(let ([size (length x)])
(if (> size 1) (cons (list (length x) (car x)) acc)
(cons (car x) acc)))) '() p)))

P12 (**) Decode a run-length encoded list.

Given a run-length code list generated as specified in problem P11. Construct its uncompressed version.

(define (decode xs)
(foldr (lambda (x acc)
(if (pair? x) (append (rep (cadr x) (car x)) acc)
(append (list x) acc))) '() xs))

P13 (**) Run-length encoding of a list (direct solution).

与P11类似,不过不允许直接使用P9的结果

Implement the so-called run-length encoding data compression method directly.

I.e. don't explicitly create the sublists containing the duplicates, as in problem P09,

but only count them. As in problem P11, simplify the result list by replacing the singleton lists (1 X) by X.

Example:

(encode-direct '(a a a a b c c a a d e e e e))

((4 A) B (2 C) (2 A) D (4 E))

(define (encode-direct xs)
(reverse (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)] ;记录前一个处理值
[snd (cadr acc)]) ;分组
(if (eq? fst x)
(let ([h (car snd)];当前正在处理的分组
[t (cdr snd)])
(if (pair? h) (list x (cons (list (+ (car h) 1) x) t))
(list x (cons (cons 2 (list x)) t))))
(list x (cons x snd))))) ;x与前一个处理值不一样,创建一个新的x分组
'(#f ()) xs)))))

P14 (*) Duplicate the elements of a list.

Example:

(dupli '(a b c c d))

(A A B B C C C C D D)

(define (dupli xs)
(foldr (lambda (x acc) (append (rep x 2) acc)) '() xs))

P15 (**) Replicate the elements of a list a given number of times.

Example:

(repli '(a b c) 3)

(A A A B B B C C C)

(define (repli xs n)
(foldr (lambda (x acc) (append (rep x n) acc)) '() xs))

P16 (**) Drop every N'th element from a list.

Example:

(drop '(a b c d e f g h i k) 3)

(A B D E G H K)

(define (drop xs n)
(reverse (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)]
[snd (car (cdr acc))])
(if (= (mod fst n) 0) (list (+ fst 1) snd)
(list (+ fst 1) (cons x snd))))) '(1 ()) xs)))))

P17 (*) Split a list into two parts; the length of the first part is given.

Do not use any predefined predicates.

Example:

(split '(a b c d e f g h i k) 3)

( (A B C) (D E F G H I K))

(define (split xs n)
(swapf (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)]
[snd (cadr acc)])
(if (or (= fst 0) (= fst n)) ;开辟新的组
(list (+ fst 1) (cons (list x) snd))
;插入原组
(let ([h (car snd)];当前正在处理的分组
[t (cdr snd)])
(list (+ fst 1) (cons (cons x h) t)))))) '(0 ()) xs)))
reverse))

P18 (**) Extract a slice from a list.

Given two indices, I and K, the slice is the list containing the elements between

the I'th and K'th element of the original list (both limits included). Start counting the elements with 1.

Example:

(slice '(a b c d e f g h i k) 3 7)

(C D E F G)

(define (slice xs n1 n2)
(reverse (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)]
[snd (car (cdr acc))])
(if (and (>= fst n1) (<= fst n2)) (list (+ fst 1) (cons x snd))
(list (+ fst 1) snd)))) '(1 ()) xs)))))

P19 (**) Rotate a list N places to the left.

Examples:

(rotate '(a b c d e f g h) 3)

(D E F G H A B C)

(rotate '(a b c d e f g h) -2)

(G H A B C D E F)

Hint: Use the predefined functions length and append, as well as the result of problem P17.

(define (rotate xs n)
(let ([s (if (> n 0) n (+ (length xs) n))])
(my-flatten (swapf (split xs s) (lambda (x) x)))))

P20 (*) Remove the K'th element from a list.

Example:

(remove-at '(a b c d) 2)

(A C D)

(define (remove-at xs n)
(reverse (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)]
[snd (car (cdr acc))])
(if (= fst n) (list (+ fst 1) snd)
(list (+ fst 1) (cons x snd))))) '(1 ()) xs)))))

P21 (*) Insert an element at a given position into a list.

Example:

(insert-at 'alfa '(a b c d) 2)

(A ALFA B C D)

(define (insert-at e xs n)
(reverse (car (cdr (foldl (lambda (acc x)
(let ([fst (car acc)]
[snd (car (cdr acc))])
(if (= fst n) (list (+ fst 1) (cons x (cons e snd)))
(list (+ fst 1) (cons x snd))))) '(1 ()) xs)))))

P22 (*) Create a list containing all integers within a given range.

If first argument is smaller than second, produce a list in decreasing order.

Example:

(range 4 9)

(4 5 6 7 8 9)

(define (range b e)
(define (iter acc result)
(if (< acc b) result
(iter (- acc 1) (cons acc result))))
(iter e '()))

P23 (**) Extract a given number of randomly selected elements from a list.

The selected items shall be returned in a list.

Example:

(rnd-select '(a b c d e f g h) 3)

(E D A)

(define (rnd-select xs n)
(define (iter acc result num)
(if (or (null? num) (>= 0 acc)) result
(let ([i (+ (random (length num)) 1)])
(iter (- acc 1) (cons (element-at num i) result) (remove-at num i)))))
(iter n '() xs))

P24 (*) Lotto: Draw N different random numbers from the set 1..M.

The selected numbers shall be returned in a list.

Example:

(lotto-select 6 49)

(23 1 17 33 21 37)

(define (lotto-select n num)
(rnd-select (range 1 num) n))

P25 (*) Generate a random permutation of the elements of a list.

Example:

(rnd-permu '(a b c d e f))

(B A D C E F)

Hint: Use the solution of problem P23.

(define (rnd-permu xs)
(rnd-select xs (length xs)))

P26 (**) Generate the combinations of K distinct objects chosen from the N elements of a list

In how many ways can a committee of 3 be chosen from a group of 12 people? We all know that there

are C(12,3) = 220 possibilities (C(N,K) denotes the well-known binomial coefficients). For pure

mathematicians, this result may be great. But we want to really generate all the possibilities in a list.

;组合
(define (combination xs n)
(cond [(or (null? xs) (< (length xs) n))'()]
[(= n 1) (foldr (lambda (x acc) (cons (list x) acc)) '() xs)]
[else (append (foldr (lambda (x acc) (cons (cons (car xs) x) acc))
'() (combination (cdr xs) (- n 1))) ;取当前(car xs) + (cdr xs)中取n-1个
(combination (cdr xs) n))]));从(cdr xs)中取n个
;(length (combination '(1 2 3 4 5 6 7 8 9 10 11 12) 3)) ;排列
(define (permutation xs n)
(cond [(or (null? xs) (< (length xs) n))'()]
[(= n 1) (foldr (lambda (x acc) (cons (list x) acc)) '() xs)]
[else (let* ([permutation-n-1 (permutation (cdr xs) (- n 1))];(cdr xs)取n-1的排列
[head (car xs)]
[permutation-swap (foldl (lambda (acc x) ;将head与arrange-n-1中的元素互换
(append (foldl (lambda (acc1 xx)
(append (foldl (lambda (acc2 xxx) (cons (cons (element-at x xx) xxx) acc2)) '() (list (replace x head xx))) acc1))
'() (range 1 (length x))) acc)) '() permutation-n-1)])
(append (append (foldl (lambda (acc x) (cons (cons head x) acc)) '() permutation-n-1) permutation-swap) (permutation (cdr xs) n)))]))

P27 (**) Group the elements of a set into disjoint subsets.

a) In how many ways can a group of 9 people work in 3 disjoint subgroups of 2, 3 and 4

persons? Write a function that generates all the possibilities and returns them in a list.

Example:

(group3 '(aldo beat carla david evi flip gary hugo ida))

( ( (ALDO BEAT) (CARLA DAVID EVI) (FLIP GARY HUGO IDA) )

... )

b) Generalize the above predicate in a way that we can specify a list of group sizes and the

predicate will return a list of groups.

Example:

(group '(aldo beat carla david evi flip gary hugo ida) '(2 2 5))

( ( (ALDO BEAT) (CARLA DAVID) (EVI FLIP GARY HUGO IDA) )

... )

Note that we do not want permutations of the group members; i.e. ((ALDO BEAT) ...) is

the same solution as ((BEAT ALDO) ...). However, we make a difference between ((ALDO BEAT) (CARLA DAVID) ...)

and ((CARLA DAVID) (ALDO BEAT) ...).

You may find more about this combinatorial problem in a good book on discrete mathematics under the term "multinomial coefficients".

(define (group xs g)
(define (tail xs) (car (reverse xs)))
;输入xs和n,输出((xs取n的组合1,剩余元素1) (xs取n的组合2,剩余元素2) ...)
(define (half-group xs n)
;输出差集
(define (diffset xs xs1)
(foldr (lambda (x acc)
(if (not (check-element xs1 (lambda (xx) (eq? x xx))))
(cons x acc) acc)) '() xs))
(let ([c (combination xs n)])
(foldr (lambda (x acc)
(cons (list x (diffset xs x)) acc)) '() c)))
(if (and (not (null? g)) (not (= (length xs) (car g))))
(let* ([half (half-group xs (car g))])
(foldr (lambda (x acc)
(let ([t (group (tail x) (cdr g))])
(append (foldr (lambda (x1 acc1)
(let ([xx (if (= (length g) 1) (list x1) x1)])
(cons (cons (car x) xx) acc1))) '() t) acc))) '() half))
(if (and (not (null? g)) (= (length xs) (car g))) (list (list xs)) (list xs))))

P28 (**) Sorting a list of lists according to length of sublists

a) We suppose that a list contains elements that are lists themselves.

The objective is to sort the elements of this list according to their length. E.g. short lists first, longer lists later, or vice versa.

Example:

(lsort '((a b c) (d e) (f g h) (d e) (i j k l) (m n) (o)))

((O) (D E) (D E) (M N) (A B C) (F G H) (I J K L))

b) Again, we suppose that a list contains elements that are lists themselves.

But this time the objective is to sort the elements of this list according to their length frequency;

i.e., in the default, where sorting is done ascendingly, lists with rare lengths are placed first, others with a

more frequent length come later.

Example:

(lfsort '((a b c) (d e) (f g h) (d e) (i j k l) (m n) (o)))

((i j k l) (o) (a b c) (f g h) (d e) (d e) (m n))

Note that in the above example, the first two lists in the result have length 4 and 1,

both lengths appear just once. The third and forth list have length 3 which appears twice

(there are two list of this length). And finally, the last three lists have length 2. This is the most frequent length.

quick sort

(define (qsort l greater)
(if (not (pair? l)) '()
(let ([m (car l)]
[partition (foldr (lambda (x acc)
(let ([small (car acc)]
[large (cadr acc)])
(if (greater x m) (list small (cons x large))
(list (cons x small) large))))
'(()()) (cdr l))])
(append (qsort (car partition) greater)
(cons m (qsort (cadr partition) greater))))))

a)

(define (lsort xs) (qsort xs (lambda (l r) (> (length l) (length r)))))

b)

(define (lfsort xs)
(define (statistics xs)
(foldr (lambda (x acc) (cons (length x) acc)) '() xs))
(define (get-frequent ftable l)
(if (= (cadar ftable) (length l)) (caar ftable)
(get-frequent (cdr ftable) l)))
(let ([ftable (encode (qsort (statistics xs) (lambda (l r) (> l r))))])
(qsort xs (lambda (l r) (> (get-frequent ftable l) (get-frequent ftable r))))))

99 Lisp Problems 列表处理(P1~P28)的更多相关文章

  1. 99 Lisp Problems 二叉树(P54~P69)

    P54A (*) Check whether a given term represents a binary tree Write a predicate istree which returns ...

  2. 第1章列表处理——1.1 Lisp列表

    Lisp是啥? Lots of Isolated Silly Parentheses (大量分离的愚蠢的括号) Lisp指的是"LISt Processing"(列表处理),通过把 ...

  3. Python之列表生成式、生成器、可迭代对象与迭代器

    本节内容 语法糖的概念 列表生成式 生成器(Generator) 可迭代对象(Iterable) 迭代器(Iterator) Iterable.Iterator与Generator之间的关系 一.语法 ...

  4. 给Lisp程序员的Python简介

    给Lisp程序员的Python简介 作者:Peter Norvig,译者:jineslong<zzljlu@gmail.com> 这是一篇为Lisp程序员写的Python简介(一些Pyth ...

  5. Python的列表

    1. Python的列表简介 1. 1 列表的定义 列表是Python中最基本的数据结构,列表是最常用的Python数据类型,列表的数据项不需要具有相同的类型.列表中的每个元素都分配一个数字 ,即它的 ...

  6. 4.5Python数据类型(5)之列表类型

    返回总目录 目录: 1.列表的定义 2.列表的常规操作 3.列表的额外操作 (一)列表的定义: 列表的定义 [var1, var2, --, var n ] # (1)列表的定义 [var1, var ...

  7. 【转】Python之列表生成式、生成器、可迭代对象与迭代器

    [转]Python之列表生成式.生成器.可迭代对象与迭代器 本节内容 语法糖的概念 列表生成式 生成器(Generator) 可迭代对象(Iterable) 迭代器(Iterator) Iterabl ...

  8. 学习python第四天 列表

    模块的导入是使用 import sys#导入模块sysprint(sys.path)#打印环境变量,可能存在的目录print(sys.argv)#打印脚本的名字,相对路径 import os os.s ...

  9. 4,list,list的列表嵌套,range

    list 索引,切片+步长 # li = [, True, (, , , , , , '小明',], {'name':'alex'}] #索引,切片,步长 # print(li[]) # print( ...

随机推荐

  1. 使用的组件:Jcrop

    JcropImage cropping for jQuery Jcrop 是一个功能强大的 jQuery 图像裁剪插件,结合后端程序(例如:PHP)可以快速的实现图片裁剪的功能. 官网地址:http: ...

  2. Chrome以https访问gitlab的问题:Your connection is not private

    在Chrome中以https访问自己搭建的gitlab站点时经常出现下面的错误: Attackers might be trying to steal your information from xx ...

  3. hmailserver

    开始使用: www.hmailserver.org 问题 让hmailserver的用户使用各自的中继来发送邮件: http://dagai.net/archives/968

  4. HighCharts之2D柱状图

    1.HighCharts之2D柱状图源码 column.html: <!DOCTYPE html> <html> <head> <meta charset=& ...

  5. 布局神器display:table-cell

    元素两端对齐 第一个案例是让两个元素分别向左和向右对齐,如果是过去,我一定会用float来实现,但其实用table可以这么做: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...

  6. 使用socket.io开发简单群聊功能

    1.新建package.json文件: { "name": "socket-chat-example", "version": " ...

  7. java方法创建

    一个方法public(作用域) void(void是不要返回值,String返回String类型,User(自定义的类型)返回User类型) test(方法名) (int a(参数)){ } stat ...

  8. Leetcode 21 Merge Two Sorted Lists 链表

    合并两个已排序的链表,考到烂得不能再烂的经典题,但是很多人写这段代码会有这样或那样的问题 这里我给出了我的C++算法实现 /** * Definition for singly-linked list ...

  9. 详解Bootstrap缩略图组件及警示框组件

    缩略图组件 缩略图在网站中最常用的就是产品列表页面,一行显示几张图片,有的在图片底下带有标题.描述内容.按钮等信息.bootstrap框架将这部分独立成一个模块组件,通过类名.thumbnail配合b ...

  10. js 停止事件冒泡 阻止浏览器的默认行为(阻止超连接 # )

    在前端开发工作中,由于浏览器兼容性等问题,我们会经常用到“停止事件冒泡”和“阻止浏览器默认行为”. 1..停止事件冒泡 JavaScript代码 //如果提供了事件对象,则这是一个非IE浏览器if ( ...