背景:数据挖掘/机器学习中的术语较多,而且我的知识有限。之前一直疑惑正则这个概念。所以写了篇博文梳理下

摘要:

  1.正则化(Regularization)

    1.1 正则化的目的  

    1.2 正则化的L1范数(lasso),L2范数(ridge)

  2.归一化 (Normalization)

      2.1归一化的目的
    2.1归一化计算方法  

    2.2.spark ml中的归一化

    2.3 python中skelearn中的归一化

知识总结:

1.正则化(Regularization)

1.1 正则化的目的:我的理解就是平衡训练误差与模型复杂度的一种方式,通过加入正则项来避免过拟合(over-fitting)。

1.2 结构风险最小化(SRM)理论: 
  经验风险最小化 + 正则化项 = 结构风险最小化
 
  经验风险最小化(ERM),是为了让拟合的误差足够小,即:对训练数据的预测误差很小。但是,我们学习得到的模型,当然是希望对未知数据有很好的预测能力(泛化能力),这样才更有意义。当拟合的误差足够小的时候,可能是模型参数较多,模型比较复杂,此时模型的泛化能力一般。于是,我们增加一个正则化项,它是一个正的常数乘以模型复杂度的函数,aJ(f),a>=0 用于调整ERM与模型复杂度的关系。结构风险最小化(SRM),相当于是要求拟合的误差足够小,同时模型不要太复杂(正则化项的极小化),这样得到的模型具有较强的泛化能力。
  
  下面是来自一篇博文的例子
  优化如下定义的加了正则项(也叫惩罚项)的损失函数:    
  

  后面的就是正则化项,其中λ越大表明惩罚粒度越大,等于0表示不做惩罚,N表示所有样本的数量,n表示参数的个数。

  如果绘图表示就是这样:
  

    上图的 lambda = 0表示未做正则化,模型过于复杂(存在过拟合)

 
 
   

  上图的 lambda = 1 添加了正则项,模型复杂度降低
1.3 正则化的L1,L2范数
  L1正则化:
 ,其中C0是代价函数,是L1正则项,lambda是正则化参数

  L2正则化:

 ,其中是L2正则项,lambda是正则化参数

 L1与L2正则化的比较:

   1.L1会趋向于产生少量的特征,而其他的特征都是0,而L2会选择更多的特征,这些特征都会接近于0。

    2.Lasso在特征选择时候非常有用,而Ridge就只是一种规则化而已。

1.4 总结:结构风险最小化是一种模型选择的策略,通过加入正则项以平衡模型复杂度和经验误差;更直观的解释——正则项就是模型参数向量(w)的范数,一般有L1,L2两种常用的范数。 

2.归一化 (Normalization)

  2.1归一化的目的:

    1)归一化后加快了梯度下降求最优解的速度;

    2)归一化有可能提高精度。详解可查看

  2.2归一化计算方法      

  公式:
    对于大于1的整数p, Lp norm = sum(|vector|^p)(1/p) 

  2.3.spark ml中的归一化

  构造方法:
  http://spark.apache.org/docs/2.0.0/api/scala/index.html#org.apache.spark.mllib.feature.Normalizer
  
newNormalizer(p: Double) ,其中p就是计算公式中的向量绝对值的幂指数
  可以使用transform方法对Vector类型或者RDD[Vector]类型的数据进行正则化
  
  下面举一个简单的例子:
  scala> import org.apache.spark.mllib.linalg.{Vector, Vectors}  

  scala> val dv: Vector = Vectors.dense(3.0,4.0)
  dv: org.apache.spark.mllib.linalg.Vector = [3.0,4.0]

  scala> val l2 =  new Normalizer(2)

  scala> l2.transform(dv)
  res8: org.apache.spark.mllib.linalg.Vector = [0.6,0.8]

  或者直接使用Vertors的norm方法:val norms = data.map(Vectors.norm(_, 2.0))

  2.4 python中skelearn中的归一化

  from sklearn.preprocessing import Normalizer
  
  #归一化,返回值为归一化后的数据
 

  Normalizer().fit_transform(iris.data)

  
 
 
 

数据预处理中归一化(Normalization)与损失函数中正则化(Regularization)解惑的更多相关文章

  1. 数据预处理 | 使用 Pandas 统一同一特征中不同的数据类型

    出现的问题:如图,总消费金额本应该为float类型,此处却显示object 需求:将 TotalCharges 的类型转换成float 使用 pandas.to_numeric(arg, errors ...

  2. python中常用的九种数据预处理方法分享

    Spyder   Ctrl + 4/5: 块注释/块反注释 本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(St ...

  3. sklearn中的数据预处理和特征工程

    小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...

  4. 机器学习实战基础(九):sklearn中的数据预处理和特征工程(二) 数据预处理 Preprocessing & Impute 之 数据无量纲化

    1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回 ...

  5. 文本数据预处理:sklearn 中 CountVectorizer、TfidfTransformer 和 TfidfVectorizer

    文本数据预处理的第一步通常是进行分词,分词后会进行向量化的操作.在介绍向量化之前,我们先来了解下词袋模型. 1.词袋模型(Bag of words,简称 BoW ) 词袋模型假设我们不考虑文本中词与词 ...

  6. 深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用

    深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用 周翼南 北京大学 工学硕士 373 人赞同了该文章 基于深 ...

  7. Python初探——sklearn库中数据预处理函数fit_transform()和transform()的区别

    敲<Python机器学习及实践>上的code的时候,对于数据预处理中涉及到的fit_transform()函数和transform()函数之间的区别很模糊,查阅了很多资料,这里整理一下: ...

  8. postgreSQL使用sql归一化数据表的某列,以及出现“字段 ‘xxx’ 必须出现在 GROUP BY 子句中或者在聚合函数中”错误的可能原因之一

    前言: 归一化(区别于标准化)一般是指,把数据变换到(0,1)之间的小数.主要是为了方便数据处理,或者把有量纲表达式变成无量纲表达式,便于不同单位或量级的指标能够进行比较和加权. 不过还是有很多人使用 ...

  9. 借助 SIMD 数据布局模板和数据预处理提高 SIMD 在动画中的使用效率

    原文链接 简介 为发挥 SIMD1 的最大作用,除了对其进行矢量化处理2外,我们还需作出其他努力.可以尝试为循环添加 #pragma omp simd3,查看编译器是否成功进行矢量化,如果性能有所提升 ...

随机推荐

  1. .net点选验证码实现思路分享

    哈哈好久没冒泡了,最进看见点选验证码有点意思,所以想自己写一个. 先上效果图 如果你被这个效果吸引了就请继续看下去. 贴代码前先说点思路: 1.要有一个汉字库,并按字形分类.(我在数据库里是安部首分类 ...

  2. Python高手之路【一】初识python

    Python简介 1:Python的创始人 Python (英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种解释型.面向对象.动态数据类型的高级程序设计语言,由荷兰人Guido ...

  3. Linux CentOS 配置Tomcat环境

    一.下载Tomcat 下载Tomcat方式也有两种,可以参考我的前一篇博文Linux CentOS配置JDK环境,这边就不再赘述. 二.在Linux处理Tomcat包 1.创建tomcat文件夹 mk ...

  4. FREERTOS 手册阅读笔记

    郑重声明,版权所有! 转载需说明. FREERTOS堆栈大小的单位是word,不是byte. 根据处理器架构优化系统的任务优先级不能超过32,If the architecture optimized ...

  5. EntityFramework Core 1.1 Add、Attach、Update、Remove方法如何高效使用详解

    前言 我比较喜欢安静,大概和我喜欢研究和琢磨技术原因相关吧,刚好到了元旦节,这几天可以好好学习下EF Core,同时在项目当中用到EF Core,借此机会给予比较深入的理解,这里我们只讲解和EF 6. ...

  6. VICA 架构设计(1)

    本文记录最近完成的一个通用实时通信客户端的架构.   背景 我们公司是做税务相关的软件,有针对大客户 MIS 系统,也有针对中小客户的 SaaS 平台.这些系统虽然都是 B/S 的,但是也需要使用 A ...

  7. 《如何使用Javascript判断浏览器终端设备》

    WEB开发中如何通过Javascript来判断终端为PC.IOS(iphone).Android呢? 可以通过判断浏览器的userAgent,用正则来判断手机是否是ios和Android客户端. va ...

  8. 如何获取url中的参数并传递给iframe中的报表

    在使用报表软件时,用户系统左边一般有目录树,点击报表节点就会在右侧网页的iframe中显示出报表,同时点击的时候也会传递一些参数给网页,比如时间和用户信息等.如何使网页中的报表能够获取到传递过来的参数 ...

  9. 当我们在谈论kmeans(1)

    本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 简书:建设中... 知乎:建设中... 当我们在谈论 ...

  10. ASP.NET Aries JSAPI 文档说明:AR.Form、AR.Combobox

    AR.Form 文档 1:对象或属性: 名称 类型 说明 data 属性 编辑页根据主键请求回来的数据 method 属性 用于获取数据的函数指向,默认值Get objName 属性 用于拦截form ...