[vijos1892]树上的最大匹配(树形DP)
分析:(100分其实用到各种c++优化,没什么实际意义,所以弄70就可以了)
题目很简单,很容易想出用树形DP,但是求方案数的时候,满满都是细节……,本渣考试时候就跪了……只能膜拜神犇代码……
#include <cstdio>
#include <cstring>
//#include <algorithm> using namespace std; typedef long long LL; const int MaxN = ; struct Node{
int v;
Node *nxt;
}pool[MaxN << ],*tail=pool,*g[MaxN]; int n;
LL m;
LL h[MaxN][];
int fa[MaxN],f[MaxN][];
LL pre[MaxN],suf[MaxN]; inline void make_edge(int u,int v){
tail->v=v;tail->nxt=g[u];g[u]=tail++;
tail->v=u;tail->nxt=g[v];g[v]=tail++;
} inline int max(int a,int b){return a>b ? a : b;}
void dp(){
static int q[MaxN],l,r;
memset(fa,0xff,sizeof(fa));
for(fa[q[l=r=]=]=;l<=r;l++)
for(Node *p=g[q[l]];p;p=p->nxt) if(!~fa[p->v])
fa[q[++r]=p->v]=q[l];
for(int i=r;i>=;i--){
int u=q[i];
int maxt=0xc0c0c0c0;
int cnt=,j;
f[u][]=,f[u][]=;
h[u][]=,h[u][]=;
for(Node *p=g[u];p;p=p->nxt) if(p->v!=fa[u]){
LL dt=;
f[u][]+=max(f[p->v][],f[p->v][]);
f[u][]+=max(f[p->v][],f[p->v][]);
maxt=max(maxt,f[p->v][]+-max(f[p->v][],f[p->v][])); if(f[p->v][]>f[p->v][]) dt=h[p->v][];
else if(f[p->v][]<f[p->v][]) dt=h[p->v][];
else dt=(h[p->v][]+h[p->v][])%m;
pre[++cnt]=dt;suf[cnt]=dt;
(h[u][]*=dt)%=m;
}
pre[]=suf[cnt+]=;
for(int i=;i<=cnt;i++) (pre[i]*=pre[i-])%=m;
for(int i=cnt;i;i--) (suf[i]*=suf[i+])%=m;
f[u][]+=maxt;
j=;
for(Node *p=g[u];p;p=p->nxt) if(p->v!=fa[u]){
if(f[p->v][]+-max(f[p->v][],f[p->v][])==maxt)
(h[u][]+=pre[j-]*suf[j+]%m*h[p->v][]%m)%=m;
j++;
}
}
if(f[][]==f[][]) printf("%d\n%lld\n",f[][],(h[][]+h[][])%m);
else if(f[][]>f[][]) printf("%d\n%lld\n",f[][],h[][]);
else printf("%d\n%lld\n",f[][],h[][]);
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++){
int u,v;scanf("%d%d",&u,&v);
make_edge(u,v);
}
scanf("%lld",&m);
dp();
return ;
}
细节反思:
1、求f和求g的过程可以一块写,思路比较清晰一点
2、求g[u][1]的时候的技巧:
本渣只能想到先求所有的乘积,然后再枚举每一个位置的,除掉,因为取模只能求逆
但此神犇的做法很厉害:
先在求f的过程中把u的每个子节点的最优值记下来保存在数组中,并记下来u往叶子节点连边能得到的最大增值maxt
然后把记最优值的数组从前往后累乘得到pre,从后往前乘得到suf
然后对于每次枚举的连边的子节点i,首先判断连i所能得到的增值是否为maxt,如果是那么增加的方案数也就确定了:pre[i-1]*suf[i+1]*g[i][0]
细节方面真的很重要……
[vijos1892]树上的最大匹配(树形DP)的更多相关文章
- Vijos p1892 树上的最大匹配 树形DP+计数 被卡常我有特殊技巧heheda
https://vijos.org/p/1892 此题需要手动开栈: <<; //256MB char *p=(char*)malloc(size)+size; __asm__(" ...
- BZOJ_4033_[HAOI2015]树上染色_树形DP
BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...
- 2021.07.17 P3177 树上染色(树形DP)
2021.07.17 P3177 树上染色(树形DP) [P3177 HAOI2015]树上染色 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.dp思想是需要什么,维护 ...
- 树上的等差数列 [树形dp]
树上的等差数列 题目描述 给定一棵包含 \(N\) 个节点的无根树,节点编号 \(1\to N\) .其中每个节点都具有一个权值,第 \(i\) 个节点的权值是 \(A_i\) . 小 \(Hi\) ...
- 【BZOJ4033】[HAOI2015] 树上染色(树形DP)
点此看题面 大致题意: 给你一棵点数为N的带权树,要你在这棵树中选择K个点染成黑色,并将其他的N-K个点染成白色.要求你求出黑点两两之间的距离加上白点两两之间距离的和的最大值. 树形\(DP\) 这道 ...
- 洛谷P3177 [HAOI2015]树上染色(树形dp)
题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- bzoj 4033: [HAOI2015]树上染色【树形dp】
准确的说应该叫树上分组背包?并不知道我写的这个叫啥 设计状态f[u][j]为在以点u为根的子树中有j个黑点,转移的时候另开一个数组,不能在原数组更新(因为会用到没更新时候的状态),方程式为g[j+k] ...
- BZOJ 4033[HAOI2015] 树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3188 Solved: 1366[Submit][Stat ...
随机推荐
- html列表
有序列表 <ol type="A", start="C"> <!--ordered list--> <li>第一项</ ...
- 打造属于自己的vim利器
毋庸置疑vim很强大,然而没有插件的话对于大多数人来说他的界面是很不友好的.下面简单写一下我对vim的配置 这是我的vim配置,装的插件不是很多,对我来说已经够用.左边的侧边栏是NERD插件提供的,还 ...
- 浅谈export 以及环境变量
简要说一下env,set,export的区别:env命令显示环境变量,set和export显示环境变量和自定变量. export:可以讲自定变量转化为环境变量之前有一个疑惑,我们定义环境变量PATH时 ...
- 4412开发板Android教程——Android平台简介
本文转自迅为开发板论坛:http://www.topeetboard.com Android和IOS Android的历史 Android公司 2005年Google收购成立22个月的Android公 ...
- SQL-一道特殊的字符串分解题目
本题不是一道直接的字符串拆解, 应用场景如下,表中有一个字段,是表示事件受影响的国家集合,使用逗号进行分隔,不幸的是,居然发现有些国家本身就带有逗号,这样在规范化的时候,如何准确地找到这些国家呢? 以 ...
- [转]通过AngularJS directive对bootstrap日期控件的的简单包装
本文转自:http://www.cnblogs.com/Benoly/p/4109460.html 最近项目上了AngularJS,而原来使用的日期控件的使用方式也需要改变,于是开始了倒腾,看了官方的 ...
- 深搜+DP剪枝 codevs 1047 邮票面值设计
codevs 1047 邮票面值设计 1999年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description ...
- 第20章 DLL高级技术(2)
20.3 延迟载入DLL 20.3.1延迟载入的目的 (1)如果应用程序使用了多个DLL,那么它的初始化可能比慢,因为加载程序要将所有必需的DLL映射到进程的地址空间.→利用延迟加载可将载入过程延伸到 ...
- bundle是什么?
bundle就是一个数据对象,像Map,HashMap一样key-value键值对的方式存放数据.在android中用于应用程序之间数据传输,不过是要靠对象使用的 谢谢,又知道了一种在Activity ...
- Oracle 排序中使用nulls first 或者nulls last 语法
-原理 Nulls first和nulls last是Oracle Order by支持的语法 如果Order by 中指定了表达式Nulls first则表示null值的记录将排在最前(不管是asc ...