概要

在前面分别介绍了"二叉查找树的相关理论知识,然后给出了二叉查找树的C和C++实现版本"。这一章写一写二叉查找树的Java实现版本。

目录

1. 二叉树查找树
2. 二叉查找树的Java实现
3. 二叉查找树的Java测试程序

转载请注明出处:http://www.cnblogs.com/skywang12345/p/3576452.html


更多内容数据结构与算法系列 目录

(01) 二叉查找树(一)之 图文解析 和 C语言的实现
(02) 二叉查找树(二)之 C++的实现
(03) 二叉查找树(三)之 Java的实现

二叉查找树简介

二叉查找树(Binary Search Tree),又被称为二叉搜索树。
它是特殊的二叉树:对于二叉树,假设x为二叉树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] <= key[x];如果y是x的右子树的一个结点,则key[y] >= key[x]。那么,这棵树就是二叉查找树。如下图所示:

在二叉查找树中:
(01) 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
(02) 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
(03) 任意节点的左、右子树也分别为二叉查找树。
(04) 没有键值相等的节点(no duplicate nodes)。

二叉查找树的Java实现

1. 二叉查找树节点的定义

public class BSTree<T extends Comparable<T>> {

    private BSTNode<T> mRoot;    // 根结点

    public class BSTNode<T extends Comparable<T>> {
T key; // 关键字(键值)
BSTNode<T> left; // 左孩子
BSTNode<T> right; // 右孩子
BSTNode<T> parent; // 父结点 public BSTNode(T key, BSTNode<T> parent, BSTNode<T> left, BSTNode<T> right) {
this.key = key;
this.parent = parent;
this.left = left;
this.right = right;
}
} ......
}

BSTree是二叉树,它保护了二叉树的根节点mRoot;mRoot是BSTNode类型,而BSTNode是二叉查找树的节点,它是BSTree的内部类。BSTNode包含二叉查找树的几个基本信息:
(01) key -- 它是关键字,是用来对二叉查找树的节点进行排序的。
(02) left -- 它指向当前节点的左孩子。
(03) right -- 它指向当前节点的右孩子。
(04) parent -- 它指向当前节点的父结点。

2 遍历

这里讲解前序遍历、中序遍历、后序遍历3种方式。

2.1 前序遍历
若二叉树非空,则执行以下操作:
(01) 访问根结点;
(02) 先序遍历左子树;
(03) 先序遍历右子树。

前序遍历代码

private void preOrder(BSTNode<T> tree) {
if(tree != null) {
System.out.print(tree.key+" ");
preOrder(tree.left);
preOrder(tree.right);
}
} public void preOrder() {
preOrder(mRoot);
}

2.2 中序遍历

若二叉树非空,则执行以下操作:
(01) 中序遍历左子树;
(02) 访问根结点;
(03) 中序遍历右子树。

中序遍历代码

private void inOrder(BSTNode<T> tree) {
if(tree != null) {
inOrder(tree.left);
System.out.print(tree.key+" ");
inOrder(tree.right);
}
} public void inOrder() {
inOrder(mRoot);
}

2.3 后序遍历

若二叉树非空,则执行以下操作:
(01) 后序遍历左子树;
(02) 后序遍历右子树;
(03) 访问根结点。

后序遍历代码

private void postOrder(BSTNode<T> tree) {
if(tree != null)
{
postOrder(tree.left);
postOrder(tree.right);
System.out.print(tree.key+" ");
}
} public void postOrder() {
postOrder(mRoot);
}

看看下面这颗树的各种遍历方式:

对于上面的二叉树而言,
(01) 前序遍历结果: 3 1 2 5 4 6
(02) 中序遍历结果: 1 2 3 4 5 6 
(03) 后序遍历结果: 2 1 4 6 5 3

3. 查找

递归版本的代码

/*
* (递归实现)查找"二叉树x"中键值为key的节点
*/
private BSTNode<T> search(BSTNode<T> x, T key) {
if (x==null)
return x; int cmp = key.compareTo(x.key);
if (cmp < 0)
return search(x.left, key);
else if (cmp > 0)
return search(x.right, key);
else
return x;
} public BSTNode<T> search(T key) {
return search(mRoot, key);
}

非递归版本的代码

/*
* (非递归实现)查找"二叉树x"中键值为key的节点
*/
private BSTNode<T> iterativeSearch(BSTNode<T> x, T key) {
while (x!=null) {
int cmp = key.compareTo(x.key); if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else
return x;
} return x;
} public BSTNode<T> iterativeSearch(T key) {
return iterativeSearch(mRoot, key);
}

4. 最大值和最小值

查找最大值的代码

/*
* 查找最大结点:返回tree为根结点的二叉树的最大结点。
*/
private BSTNode<T> maximum(BSTNode<T> tree) {
if (tree == null)
return null; while(tree.right != null)
tree = tree.right;
return tree;
} public T maximum() {
BSTNode<T> p = maximum(mRoot);
if (p != null)
return p.key; return null;
}

查找最小值的代码

/*
* 查找最小结点:返回tree为根结点的二叉树的最小结点。
*/
private BSTNode<T> minimum(BSTNode<T> tree) {
if (tree == null)
return null; while(tree.left != null)
tree = tree.left;
return tree;
} public T minimum() {
BSTNode<T> p = minimum(mRoot);
if (p != null)
return p.key; return null;
}

5. 前驱和后继

节点的前驱:是该节点的左子树中的最大节点。
节点的后继:是该节点的右子树中的最小节点。

查找前驱节点的代码

/*
* 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
*/
public BSTNode<T> predecessor(BSTNode<T> x) {
// 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
if (x.left != null)
return maximum(x.left); // 如果x没有左孩子。则x有以下两种可能:
// (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
// (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
BSTNode<T> y = x.parent;
while ((y!=null) && (x==y.left)) {
x = y;
y = y.parent;
} return y;
}

查找后继节点的代码

/*
* 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
*/
public BSTNode<T> successor(BSTNode<T> x) {
// 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
if (x.right != null)
return minimum(x.right); // 如果x没有右孩子。则x有以下两种可能:
// (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
// (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
BSTNode<T> y = x.parent;
while ((y!=null) && (x==y.right)) {
x = y;
y = y.parent;
} return y;
}

6. 插入

插入节点的代码

/*
* 将结点插入到二叉树中
*
* 参数说明:
* tree 二叉树的
* z 插入的结点
*/
private void insert(BSTree<T> bst, BSTNode<T> z) {
int cmp;
BSTNode<T> y = null;
BSTNode<T> x = bst.mRoot; // 查找z的插入位置
while (x != null) {
y = x;
cmp = z.key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else
x = x.right;
} z.parent = y;
if (y==null)
bst.mRoot = z;
else {
cmp = z.key.compareTo(y.key);
if (cmp < 0)
y.left = z;
else
y.right = z;
}
} /*
* 新建结点(key),并将其插入到二叉树中
*
* 参数说明:
* tree 二叉树的根结点
* key 插入结点的键值
*/
public void insert(T key) {
BSTNode<T> z=new BSTNode<T>(key,null,null,null); // 如果新建结点失败,则返回。
if (z != null)
insert(this, z);
}

注:本文实现的二叉查找树是允许插入相同键值的节点的。若想禁止二叉查找树中插入相同键值的节点,可以参考"二叉查找树(一)之 图文解析 和 C语言的实现"中的插入函数进行修改。

7. 删除

删除节点的代码

/*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* bst 二叉树
* z 删除的结点
*/
private BSTNode<T> remove(BSTree<T> bst, BSTNode<T> z) {
BSTNode<T> x=null;
BSTNode<T> y=null; if ((z.left == null) || (z.right == null) )
y = z;
else
y = successor(z); if (y.left != null)
x = y.left;
else
x = y.right; if (x != null)
x.parent = y.parent; if (y.parent == null)
bst.mRoot = x;
else if (y == y.parent.left)
y.parent.left = x;
else
y.parent.right = x; if (y != z)
z.key = y.key; return y;
} /*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* tree 二叉树的根结点
* z 删除的结点
*/
public void remove(T key) {
BSTNode<T> z, node; if ((z = search(mRoot, key)) != null)
if ( (node = remove(this, z)) != null)
node = null;
}


8. 打印

打印二叉查找树的代码

/*
* 打印"二叉查找树"
*
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
private void print(BSTNode<T> tree, T key, int direction) { if(tree != null) { if(direction==0) // tree是根节点
System.out.printf("%2d is root\n", tree.key);
else // tree是分支节点
System.out.printf("%2d is %2d's %6s child\n", tree.key, key, direction==1?"right" : "left"); print(tree.left, tree.key, -1);
print(tree.right,tree.key, 1);
}
} public void print() {
if (mRoot != null)
print(mRoot, mRoot.key, 0);
}

9. 销毁

销毁二叉查找树的代码

/*
* 销毁二叉树
*/
private void destroy(BSTNode<T> tree) {
if (tree==null)
return ; if (tree.left != null)
destroy(tree.left);
if (tree.right != null)
destroy(tree.right); tree=null;
} public void clear() {
destroy(mRoot);
mRoot = null;
}

完整的实现代码
二叉查找树的Java实现文件(BSTree.java)

 /**
* Java 语言: 二叉查找树
*
* @author skywang
* @date 2013/11/07
*/ public class BSTree<T extends Comparable<T>> { private BSTNode<T> mRoot; // 根结点 public class BSTNode<T extends Comparable<T>> {
T key; // 关键字(键值)
BSTNode<T> left; // 左孩子
BSTNode<T> right; // 右孩子
BSTNode<T> parent; // 父结点 public BSTNode(T key, BSTNode<T> parent, BSTNode<T> left, BSTNode<T> right) {
this.key = key;
this.parent = parent;
this.left = left;
this.right = right;
} public T getKey() {
return key;
} public String toString() {
return "key:"+key;
}
} public BSTree() {
mRoot=null;
} /*
* 前序遍历"二叉树"
*/
private void preOrder(BSTNode<T> tree) {
if(tree != null) {
System.out.print(tree.key+" ");
preOrder(tree.left);
preOrder(tree.right);
}
} public void preOrder() {
preOrder(mRoot);
} /*
* 中序遍历"二叉树"
*/
private void inOrder(BSTNode<T> tree) {
if(tree != null) {
inOrder(tree.left);
System.out.print(tree.key+" ");
inOrder(tree.right);
}
} public void inOrder() {
inOrder(mRoot);
} /*
* 后序遍历"二叉树"
*/
private void postOrder(BSTNode<T> tree) {
if(tree != null)
{
postOrder(tree.left);
postOrder(tree.right);
System.out.print(tree.key+" ");
}
} public void postOrder() {
postOrder(mRoot);
} /*
* (递归实现)查找"二叉树x"中键值为key的节点
*/
private BSTNode<T> search(BSTNode<T> x, T key) {
if (x==null)
return x; int cmp = key.compareTo(x.key);
if (cmp < 0)
return search(x.left, key);
else if (cmp > 0)
return search(x.right, key);
else
return x;
} public BSTNode<T> search(T key) {
return search(mRoot, key);
} /*
* (非递归实现)查找"二叉树x"中键值为key的节点
*/
private BSTNode<T> iterativeSearch(BSTNode<T> x, T key) {
while (x!=null) {
int cmp = key.compareTo(x.key); if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else
return x;
} return x;
} public BSTNode<T> iterativeSearch(T key) {
return iterativeSearch(mRoot, key);
} /*
* 查找最小结点:返回tree为根结点的二叉树的最小结点。
*/
private BSTNode<T> minimum(BSTNode<T> tree) {
if (tree == null)
return null; while(tree.left != null)
tree = tree.left;
return tree;
} public T minimum() {
BSTNode<T> p = minimum(mRoot);
if (p != null)
return p.key; return null;
} /*
* 查找最大结点:返回tree为根结点的二叉树的最大结点。
*/
private BSTNode<T> maximum(BSTNode<T> tree) {
if (tree == null)
return null; while(tree.right != null)
tree = tree.right;
return tree;
} public T maximum() {
BSTNode<T> p = maximum(mRoot);
if (p != null)
return p.key; return null;
} /*
* 找结点(x)的后继结点。即,查找"二叉树中数据值大于该结点"的"最小结点"。
*/
public BSTNode<T> successor(BSTNode<T> x) {
// 如果x存在右孩子,则"x的后继结点"为 "以其右孩子为根的子树的最小结点"。
if (x.right != null)
return minimum(x.right); // 如果x没有右孩子。则x有以下两种可能:
// (01) x是"一个左孩子",则"x的后继结点"为 "它的父结点"。
// (02) x是"一个右孩子",则查找"x的最低的父结点,并且该父结点要具有左孩子",找到的这个"最低的父结点"就是"x的后继结点"。
BSTNode<T> y = x.parent;
while ((y!=null) && (x==y.right)) {
x = y;
y = y.parent;
} return y;
} /*
* 找结点(x)的前驱结点。即,查找"二叉树中数据值小于该结点"的"最大结点"。
*/
public BSTNode<T> predecessor(BSTNode<T> x) {
// 如果x存在左孩子,则"x的前驱结点"为 "以其左孩子为根的子树的最大结点"。
if (x.left != null)
return maximum(x.left); // 如果x没有左孩子。则x有以下两种可能:
// (01) x是"一个右孩子",则"x的前驱结点"为 "它的父结点"。
// (01) x是"一个左孩子",则查找"x的最低的父结点,并且该父结点要具有右孩子",找到的这个"最低的父结点"就是"x的前驱结点"。
BSTNode<T> y = x.parent;
while ((y!=null) && (x==y.left)) {
x = y;
y = y.parent;
} return y;
} /*
* 将结点插入到二叉树中
*
* 参数说明:
* tree 二叉树的
* z 插入的结点
*/
private void insert(BSTree<T> bst, BSTNode<T> z) {
int cmp;
BSTNode<T> y = null;
BSTNode<T> x = bst.mRoot; // 查找z的插入位置
while (x != null) {
y = x;
cmp = z.key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else
x = x.right;
} z.parent = y;
if (y==null)
bst.mRoot = z;
else {
cmp = z.key.compareTo(y.key);
if (cmp < 0)
y.left = z;
else
y.right = z;
}
} /*
* 新建结点(key),并将其插入到二叉树中
*
* 参数说明:
* tree 二叉树的根结点
* key 插入结点的键值
*/
public void insert(T key) {
BSTNode<T> z=new BSTNode<T>(key,null,null,null); // 如果新建结点失败,则返回。
if (z != null)
insert(this, z);
} /*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* bst 二叉树
* z 删除的结点
*/
private BSTNode<T> remove(BSTree<T> bst, BSTNode<T> z) {
BSTNode<T> x=null;
BSTNode<T> y=null; if ((z.left == null) || (z.right == null) )
y = z;
else
y = successor(z); if (y.left != null)
x = y.left;
else
x = y.right; if (x != null)
x.parent = y.parent; if (y.parent == null)
bst.mRoot = x;
else if (y == y.parent.left)
y.parent.left = x;
else
y.parent.right = x; if (y != z)
z.key = y.key; return y;
} /*
* 删除结点(z),并返回被删除的结点
*
* 参数说明:
* tree 二叉树的根结点
* z 删除的结点
*/
public void remove(T key) {
BSTNode<T> z, node; if ((z = search(mRoot, key)) != null)
if ( (node = remove(this, z)) != null)
node = null;
} /*
* 销毁二叉树
*/
private void destroy(BSTNode<T> tree) {
if (tree==null)
return ; if (tree.left != null)
destroy(tree.left);
if (tree.right != null)
destroy(tree.right); tree=null;
} public void clear() {
destroy(mRoot);
mRoot = null;
} /*
* 打印"二叉查找树"
*
* key -- 节点的键值
* direction -- 0,表示该节点是根节点;
* -1,表示该节点是它的父结点的左孩子;
* 1,表示该节点是它的父结点的右孩子。
*/
private void print(BSTNode<T> tree, T key, int direction) { if(tree != null) { if(direction==0) // tree是根节点
System.out.printf("%2d is root\n", tree.key);
else // tree是分支节点
System.out.printf("%2d is %2d's %6s child\n", tree.key, key, direction==1?"right" : "left"); print(tree.left, tree.key, -1);
print(tree.right,tree.key, 1);
}
} public void print() {
if (mRoot != null)
print(mRoot, mRoot.key, 0);
}
}

二叉查找树的C++测试程序(BSTreeTest.java)

 /**
* Java 语言: 二叉查找树
*
* @author skywang
* @date 2013/11/07
*/
public class BSTreeTest { private static final int arr[] = {1,5,4,3,2,6}; public static void main(String[] args) {
int i, ilen;
BSTree<Integer> tree=new BSTree<Integer>(); System.out.print("== 依次添加: ");
ilen = arr.length;
for(i=0; i<ilen; i++) {
System.out.print(arr[i]+" ");
tree.insert(arr[i]);
} System.out.print("\n== 前序遍历: ");
tree.preOrder(); System.out.print("\n== 中序遍历: ");
tree.inOrder(); System.out.print("\n== 后序遍历: ");
tree.postOrder();
System.out.println(); System.out.println("== 最小值: "+ tree.minimum());
System.out.println("== 最大值: "+ tree.maximum());
System.out.println("== 树的详细信息: ");
tree.print(); System.out.print("\n== 删除根节点: "+ arr[3]);
tree.remove(arr[3]); System.out.print("\n== 中序遍历: ");
tree.inOrder();
System.out.println(); // 销毁二叉树
tree.clear();
}
}

在二叉查找树的Java实现中,使用了泛型,也就意味着支持任意类型; 但是该类型必须要实现Comparable接口。

二叉查找树的Java测试程序

上面的BSTreeTest.java是二叉查找树树的测试程序,运行结果如下:

== 依次添加: 1 5 4 3 2 6
== 前序遍历: 1 5 4 3 2 6
== 中序遍历: 1 2 3 4 5 6
== 后序遍历: 2 3 4 6 5 1
== 最小值: 1
== 最大值: 6
== 树的详细信息:
1 is root
5 is 1's right child
4 is 5's left child
3 is 4's left child
2 is 3's left child
6 is 5's right child == 删除根节点: 3
== 中序遍历: 1 2 4 5 6

下面对测试程序的流程进行分析!

(01) 新建"二叉查找树"root。

(02) 向二叉查找树中依次插入1,5,4,3,2,6 。如下图所示:

(03) 遍历和查找
插入1,5,4,3,2,6之后,得到的二叉查找树如下:

前序遍历结果: 1 5 4 3 2 6 
中序遍历结果: 1 2 3 4 5 6 
后序遍历结果: 2 3 4 6 5 1 
最小值是1,而最大值是6。

(04) 删除节点4。如下图所示:

(05) 重新遍历该二叉查找树。
中序遍历结果: 1 2 4 5 6

二叉查找树(三)之 Java的实现的更多相关文章

  1. AVL树(三)之 Java的实现

    概要 前面分别介绍了AVL树"C语言版本"和"C++版本",本章介绍AVL树的Java实现版本,它的算法与C语言和C++版本一样.内容包括:1. AVL树的介绍 ...

  2. 伸展树(三)之 Java的实现

    概要 前面分别通过C和C++实现了伸展树,本章给出伸展树的Java版本.基本算法和原理都与前两章一样.1. 伸展树的介绍2. 伸展树的Java实现(完整源码)3. 伸展树的Java测试程序 转载请注明 ...

  3. 二叉堆(三)之 Java的实现

    概要 前面分别通过C和C++实现了二叉堆,本章给出二叉堆的Java版本.还是那句话,它们的原理一样,择其一了解即可. 目录1. 二叉堆的介绍2. 二叉堆的图文解析3. 二叉堆的Java实现(完整源码) ...

  4. 左倾堆(三)之 Java的实现

    概要 前面分别通过C和C++实现了左倾堆,本章给出左倾堆的Java版本.还是那句老话,三种实现的原理一样,择其一了解即可. 目录1. 左倾堆的介绍2. 左倾堆的图文解析3. 左倾堆的Java实现(完整 ...

  5. 斐波那契堆(三)之 Java的实现

    概要 前面分别通过C和C++实现了斐波那契堆,本章给出斐波那契堆的Java版本.还是那句老话,三种实现的原理一样,择其一了解即可. 目录1. 斐波那契堆的介绍2. 斐波那契堆的基本操作3. 斐波那契堆 ...

  6. (第三章)Java内存模型(下)

    一.happens-before happens-before是JMM最核心的概念.对于Java程序员来说,理解happens-before是理解JMM的关键. 1.1 JMM的设计 从JMM设计者的 ...

  7. 【JAVA编码专题】 JAVA字符编码系列三:Java应用中的编码问题

    这两天抽时间又总结/整理了一下各种编码的实际编码方式,和在Java应用中的使用情况,在这里记录下来以便日后参考. 为了构成一个完整的对文字编码的认识和深入把握,以便处理在Java开发过程中遇到的各种问 ...

  8. 三种java 去掉字符串中的重复字符函数

    三种java 去掉字符串中的重复字符函数 public static void main(string[] args) { system.out.println(removerepeatedchar( ...

  9. 实验三《Java面向对象程序设计》实验报告

    20162308 实验三<Java面向对象程序设计>实验报告 实验内容 XP基础 XP核心实践 IDEA工具学习 密码学算法基础 实验步骤 (一)Refactor/Reformat使用 p ...

随机推荐

  1. Spring基于注解及SpringMVC

    1.使用注解 (1)组件扫描 指定一个包路径,Spring会自动扫描该包 及其子包所有组件类,当发现组件类定义前有 特定的注解标记时,就将该组件纳入到Spring 容器.等价于原有XML配置中的< ...

  2. 关于《精通移动App测试实战:技术、工具和案例》图书勘误信息

    首先,对由于我们工作的疏忽向<精通移动App测试实战:技术.工具和案例>读者朋友们表示歉意,同时已将这些问题反馈给了出版社编辑同志,再版时将会统一修正: 其次,勘误信息请参看附件pdf文档 ...

  3. Multiplexing SDIO Devices Using MAX II or CoolRunner-II CPLD

    XAPP906 Supporting Multiple SD Devices with CoolRunner-II CPLDs There has been an increasing demand ...

  4. linux云主机怎么安装WDCP

    linux云主机 教你成功安装WDCP的2个方法(第一个不成功就试第2个) 工具/原料   Xshell 云服务器 方法/步骤   1 先用Xshell连接你的服务器 2 输入一下代码    wget ...

  5. MongoDB副本集配置系列十一:MongoDB 数据同步原理和自动故障转移的原理

    1:数据同步的原理: 当Primary节点完成数据操作后,Secondary会做出一系列的动作保证数据的同步: 1:检查自己local库的oplog.rs集合找出最近的时间戳. 2:检查Primary ...

  6. JavaScript-求时间差

    var date1=new Date(); //开始时间 alert("aa"); var date2=new Date(); //结束时间 var date3=date2.get ...

  7. Scala 深入浅出实战经典 第48讲:Scala类型约束代码实战及其在Spark中的应用源码解析

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...

  8. 每日英语:The Secret About Online Ad Traffic: One-Third Is Bogus

    Billions of dollars are flowing into online advertising. But marketers also are confronting an uncom ...

  9. gem install 出现Errno::ECONNRESET: Connection reset by peer - SSL_connect (https://api.rubygems.org

    在安装了rvm来管理多版本的ruby之后,想在不同环境下安装一些gems,结果gem install puma 之后,发现一次又一次失败. gem install 出现Errno::ECONNRESE ...

  10. js实现hash

    由于项目中用到了hash,自己实现了一个. Hash = function () { } Hash.prototype = { constructor: Hash, add: function (k, ...