poj2528 Mayor's posters(线段树之成段更新)
Mayor's posters
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 37346
Accepted: 10864
Description
The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
- The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
Input
The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.
Output
For each input data set print the number of visible posters after all the posters are placed.
The picture below illustrates the case of the sample input.
Sample Input
1
5
1 4
2 6
8 10
3 4
7 10
Sample Output
4
有感:
今天感觉收获挺多,再看一位大神写的博客(写的很好),学习线段数,顺带题解了什么叫离散化,做为初学着,我表示我完全是照着大神的代码敲的
。。本题数据很大,直接做的话会超时超内存,需离散化
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1 const int maxn=11111;
bool hash[maxn];
int li[maxn],ri[maxn];
int X[maxn*3];
int col[maxn<<2];
int cnt; void PushDown(int rt)
{
if(col[rt]!=-1)
{
col[rt<<1]=col[rt<<1|1]=col[rt];
col[rt]=-1;
}
} void update(int L,int R,int c,int l,int r,int rt)
{
if(L<=l&&R>=r)
{
col[rt]=c;
return ;
}
PushDown(rt);
int m=(l+r)>>1;
if(L<=m) update(L,R,c,lson);
if(m<R) update(L,R,c,rson);
} void query(int l,int r,int rt)
{
if(col[rt]!=-1)
{
if(!hash[col[rt]]) cnt++;
hash[col[rt]]=true;
return ;
}
if(l==r) return ;
int m=(l+r)>>1;
query(lson);
query(rson);
} int Bin(int key,int n,int X[])
{
int l=0,r=n-1;
while(l<=r)
{
int m=(l+r)>>1;
if(X[m]==key) return m;
if(X[m]<key) l=m+1;
else r=m-1;
}
return -1;
} int main()
{
int T,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int nn=0;
for(int i=0;i<n;i++)
{
scanf("%d%d",&li[i],&ri[i]);
X[nn++]=li[i];
X[nn++]=ri[i];
}
sort(X,X+nn);
int m=1;
for(int i=1;i<nn;i++)
if(X[i]!=X[i-1]) X[m++]=X[i]; for(int i=m-1;i>0;i--)
{
if(X[i]!=X[i-1]+1)
X[m++]=X[i-1]+1;
}
sort(X,X+m);
memset(col,-1,sizeof(col));
for(int i=0;i<n;i++)
{
int l=Bin(li[i],m,X);
int r=Bin(ri[i],m,X);
update(l,r,i,0,m-1,1);
}
cnt=0;
memset(hash,false,sizeof(hash));
query(0,m-1,1);
printf("%d\n",cnt);
}
}
poj2528 Mayor's posters(线段树之成段更新)的更多相关文章
- Codeforces295A - Greg and Array(线段树的成段更新)
题目大意 给定一个序列a[1],a[2]--a[n] 接下来给出m种操作,每种操作是以下形式的: l r d 表示把区间[l,r]内的每一个数都加上一个值d 之后有k个操作,每个操作是以下形式的: x ...
- hdu 1698 Just a Hook(线段树之 成段更新)
Just a Hook Time Limit: ...
- poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 43507 Accepted: 12693 ...
- POJ2528 Mayor's posters —— 线段树染色 + 离散化
题目链接:https://vjudge.net/problem/POJ-2528 The citizens of Bytetown, AB, could not stand that the cand ...
- [poj2528] Mayor's posters (线段树+离散化)
线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...
- POJ2528:Mayor's posters(线段树区间更新+离散化)
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- poj2528 Mayor's posters(线段树区间修改+特殊离散化)
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- poj2528 Mayor's posters(线段树区间覆盖)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 50888 Accepted: 14737 ...
- 线段树之成段更新( 需要用到延迟标记,简单来说就是每次更新的时候不要更新到底,用延迟标记使得更新延迟到下次需要更新or询问到的时候)
HDU 1698 链接: http://acm.hdu.edu.cn/showproblem.php?pid=1698 线段树功能:update:成段替换 (由于只query一次总区间,所以可以直 ...
随机推荐
- 译:什么是ViewData的, ViewBag和TempData? - MVC为当前和后续请求之间传递数据的三种方法
译文出处:http://www.codeproject.com/Articles/476967/WhatplusisplusViewData-cplusViewBagplusandplusTem AS ...
- asp.net中绘制大数据量的可交互的图表
在一个asp.net项目中要用到能绘制大数据量信息的图表,并且是可交互的(放大.缩小.导出.打印.实时数据),能够绘制多种图形. 为此进行了多方调查预研工作,预研过微软的MsChart图表组件.基于j ...
- WPF 程序自删除(自毁)|卸载程序删除
一般是在MainWindow_Closed 事件中调用批处理命令删除. 在借鉴别人的想法的基础上的算是改进. 自删除步骤: 1.删除文件 2.删除存放文件夹. 实现代码: private static ...
- Win7如何部署apache服务器(包括SSL设置)
部署普通站点 1.首先下载apache24版本,下载地址为http://pan.baidu.com/s/1pLmvDgB; 2.解压到你的电脑本地目录,如D:\Apache24(下文配置都会以当前目录 ...
- HTML5实现屏幕手势解锁(转载)
来源:https://github.com/lvming6816077/H5lockhttp://threejs.org/examples/http://www.inf.usi.ch/phd/wett ...
- FL2440驱动添加(1):hello world 驱动模块添加
试试第一个hello world模块添加: 1,在添加drivers/char/hello.c /*************************************************** ...
- MyBatis插入语句返回主键值
插入语句xml代码: <insert id="insertUser" parameterType="com.spring.mybatis.po.User" ...
- swift学习笔记之-自动引用计数
//自动引用计数 import UIKit /*自动引用计数(Automatic Reference Counting) 防止循环强引用 Swift 使用自动引用计数(ARC)机制来跟踪和管理你的应用 ...
- 优化ABAP性能(摘录)
1.使用where语句不推荐Select * from zflight.Check : zflight-airln = ‘LF’ and zflight-fligh = ‘BW222’.Endsele ...
- 总结隐藏Ribbon菜单的方法
1. 重载 using (SPSite site = new SPSite("http://SP2010-01")) { using (SPWeb web = site.OpenW ...