Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 647    Accepted Submission(s): 320

Problem Description

 
Sample Input
2
 
Sample Output
2

Hint

1. For N = 2, S(1) = S(2) = 1.

2. The input file consists of multiple test cases.

 
Source
 

思路:一道整数划分题目,不难推出公式:2^(n-1),

根据费马小定理:(2,MOD)互质,则2^(p-1)%p=1,于是我们可以转化为:2^(n-1)%MOD=2^((n-1)%(MOD-1))%MOD,从而用快速幂求解。

 公式2^(n-1) % MOD;

可先对(n-1)%(MOD-1)

import java.io.*;
import java.util.*;
import java.math.*;
public class Main {
BigInteger n;
String s="";
BigInteger one=BigInteger.valueOf(1);
BigInteger Mod=BigInteger.valueOf((long)(1e9+7));
BigInteger Mod1=BigInteger.valueOf((long)(1e9+6));
public static void main(String[] args) {
new Main().work();
}
void work(){
Scanner sc=new Scanner(new BufferedInputStream(System.in));
while(sc.hasNext()){
s=sc.next();
n=BigInteger.valueOf(0);
for(int i=0;i<s.length();i++){
n=(n.multiply(BigInteger.valueOf(10)).add(BigInteger.valueOf(s.charAt(i)-'0'))).mod(Mod1);
}
long num=n.longValue()-1;
System.out.println(pow(BigInteger.valueOf(2),num).mod(Mod));
}
}
BigInteger pow(BigInteger a,long b){
BigInteger sum=BigInteger.ONE;
while(b!=00){
if((b&1)!=0){
sum=sum.multiply(a).mod(Mod);
}
a=a.multiply(a).mod(Mod);
b>>=1;
}
return sum;
}
}

HDU 4704 Sum (费马定理+快速幂)的更多相关文章

  1. HDU 4704 Sum (高精度+快速幂+费马小定理+二项式定理)

    Sum Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I64u Submit Status  ...

  2. HDU 4704 Sum 超大数幂取模

    很容易得出答案就是2^(n-1) 但是N暴大,所以不可以直接用幂取模,因为除法操作至少O(len)了,总时间会达到O(len*log(N)) 显然爆的一塌糊涂 套用FZU1759的模板+顺手写一个大数 ...

  3. HDU 1061 Rightmost Digit --- 快速幂取模

    HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围, ...

  4. HDU.2640 Queuing (矩阵快速幂)

    HDU.2640 Queuing (矩阵快速幂) 题意分析 不妨令f为1,m为0,那么题目的意思为,求长度为n的01序列,求其中不含111或者101这样串的个数对M取模的值. 用F(n)表示串长为n的 ...

  5. HDU 5667 构造矩阵快速幂

    HDU 5667 构造矩阵快速幂 题目描述 解析 我们根据递推公式 设 则可得到Q的指数关系式 求Q构造矩阵 同时有公式 其中φ为欧拉函数,且当p为质数时有 代码 #include <cstdi ...

  6. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  7. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  8. hdu 4704 Sum(组合,费马小定理,快速幂)

    题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4704: 这个题很刁是不是,一点都不6,为什么数据范围要开这么大,把我吓哭了,我kao......说笑的, ...

  9. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

随机推荐

  1. BZOJ 1179: [Apio2009]Atm( tarjan + 最短路 )

    对于一个强连通分量, 一定是整个走或者不走, 所以tarjan缩点然后跑dijkstra. ------------------------------------------------------ ...

  2. Wireshark安装、简单使用、过滤器简介

    1.简介 Wireshark是一款非常著名的网络嗅探器,它的前身是Ethereal.Wireshark是一款免费的软件,只需要从官网下根据不同的系统(window,linux等)下载其对应的安装文件即 ...

  3. VS2010对C++11的支持列表(感觉大部分都不支持)

    c++11,就是之前的c++0x,已经成为了最新的c++标准.像咱这样天天用c++的,就赶紧follow一下.学习成果,放在这里,不说分享,至少自己增强下记忆. 首先,给出一些有用的链接. http: ...

  4. boost操作xml 5分钟官方教程

    Five Minute Tutorial This tutorial uses XML. Note that the library is not specifically bound to XML, ...

  5. CorePlot学习零---安装

    刚開始接触CorePlot时,网上搜到非常多相关文章,解说怎样安装这个第三方库,到眼下阶段该库的版本号已经到了1.5了,可是在github上你能够看到他的安装方法,只是为啥就没有codpod来安装呢? ...

  6. Swift - 访问通讯录联系人(使用系统提供的通讯录交互界面)

    1,通讯录访问介绍 通讯录(或叫地址簿,电话簿)是一个数据库,里面储存了联系人的相关信息.要实现访问通讯录有如下两种方式: (1)AddressBook.framework框架 : 没有界面,通过代码 ...

  7. ASP.NET - 网页重定向 Response.Redirect()

    在网页中使用重定向,意思就是在网站中的某一个页面跳转到另一个页面. Response.Redirect(~/abc.aspx); 使用“~”的作用是可以从任意位置跳转. 如果没有“~”,那么跳转的时候 ...

  8. http协议与web本质

    当你在浏览器地址栏敲入“http://www.csdn.net/”,然后猛按回车,呈现在你面前的,将是csdn的首页了(这真是废话,你会认为这是理所当然的).作为一个开发者,尤其是web开发人员,我想 ...

  9. 恭喜我开通了CSDN博客

    准备在这里写点东西,记录我的学习过程....

  10. JS - 循环添加 DropDownList(Select)

    代码: <td style="padding-left: 10px;"> <select id="ddl_picture_3"> < ...