主题链接:

啊哈哈,选我

题目:

Sorting It All Out
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 26897   Accepted: 9281

Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will
give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of
the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character
"<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three: 



Sorted sequence determined after xxx relations: yyy...y. 

Sorted sequence cannot be determined. 

Inconsistency found after xxx relations. 



where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence. 

Sample Input

4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

Source

这个题目对拓扑排序考虑的很细致。。

考虑了成环的情况。成环的情况也就是最后存在入度不为0的点。。

则计数后最后的num不等于n。。

这个题目还有就是这个题目不是对全部的信息进行综合推断,而是依据前面的假设可以得到已经成环了,或者可以得到n的大小顺序了,则后面的就不用推断了。。。所以用ok1,ok2两个变量进行控制。。

代码为:

#include<cstdio>
#include<stack>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=26+10;
int n,m;
int in[maxn],Copy[maxn],map[maxn][maxn],temp[maxn];
stack<int>S;
int topo()
{
int flag=0,num=0;
while(!S.empty()) S.pop();
memcpy(Copy,in,sizeof(in));
for(int i=0;i<n;i++)
{
if(Copy[i]==0)
S.push(i);
}
while(!S.empty())
{
if(S.size()>1)
flag=1;
int Gery=S.top();
S.pop();
temp[num++]=Gery;
for(int i=0;i<n;i++)
{
if(map[Gery][i])
{
if(--Copy[i]==0)
S.push(i);
}
}
}
if(num!=n)
return 0;//成环。则已经能够确定关系了,能够标记。
if(flag)
return 1;//有多个入度为0的点,则还不确定。继续输入信息。添加条件,看能否够得到顺序。
return 2;//顺序已经得到确定。能够标记。 } int main()
{
char str[maxn];
int ok1,ok2,u,v,i,is_n;
while(~scanf("%d%d",&n,&m),n,m)
{
is_n=0;
memset(in,0,sizeof(in));
memset(map,0,sizeof(map));
ok1=ok2=0;
for(i=1;i<=m;i++)
{
scanf("%s",str);
if(!ok1&&!ok2)
{
u=str[0]-'A';
v=str[2]-'A';
if(map[u][v]==0)
{
map[u][v]=1;
in[v]++;
}
int ans=topo();
if(ans==0)
{
is_n=i;
ok2=1;
}
else if(ans==2)
{
is_n=i;
ok1=1;
}
}
}
if(ok1)
{
printf("Sorted sequence determined after %d relations: ",is_n);
for(int i=0;i<n-1;i++)
printf("%c",temp[i]+'A');
printf("%c.\n",temp[n-1]+'A');
}
if(ok2)
printf("Inconsistency found after %d relations.\n",is_n);
if(ok1==0&&ok2==0)
printf("Sorted sequence cannot be determined.\n");
}
return 0;
}

版权声明:本文博客原创文章。博客,未经同意,不得转载。

poj1094Sorting It All Out的更多相关文章

  1. poj1094-Sorting It All Out-拓扑排序

    题意: 1).给你一些大写字母,共n个:大写字母间有m条关系: 2).举例:关系:A<B,意思就是A要排在B的前面(也就是说可能B排在A的前面 3).输出:有三种情况: 1.n个字母在前 i 条 ...

  2. POJ--1094--Sorting It All Out||NYOJ--349--Sorting It All Out(拓扑排序)

    NYOJ的数据水一点,POJ过了是真的过了 /* 拓扑排序模板题: 每次输入都要判断有环与有序的情况,如果存在环路或者已经有序可以输出则跳过下面的输入 判断有序,通过是否在一个以上的入度为0的点,存在 ...

  3. poj1094Sorting It All Out——拓扑排序

    题目:http://poj.org/problem?id=1094 看到此题,首先觉得这是一种层层递进的关系,所以可以想到用拓扑排序: 就像人工排序,每次需要找到一个最小的,再找到新的最小的……所以用 ...

  4. poj1094Sorting It All Out 拓扑排序

    做拓扑排序的题目,首先要知道两条定理: 1.最后得到的拓扑数组的元素个数如果小于n,则不存在拓扑序列.  (有圈) 2.如果一次入队的入度为零的点数大于1,则拓扑序列不唯一. (关系不确定) 本题有一 ...

随机推荐

  1. hibernate解决oracle的id自增?

    以前做SSH项目时,涉及到的数据库是mySQL,只需将bean的配置文件id设为native 就可以实现表id的自增. 现在用到了Oracle,当然知道这样是不行的啦,那么用序列自增? 我在网络上搜索 ...

  2. Ubuntu 无法拖拽复制

    首先确定 在ubuntu 下,vmware tools 已经安装成功 有些时候会出现vmware tools 已经安装成功,但是却无法实现拖拽和复制 1.首先在虚拟机设置里面勾选共享剪切板 2.然后重 ...

  3. TWinControl.DefaultHandler处理WM_CTLCOLORMSGBOX..WM_CTLCOLORSTATIC消息的两个参数很有意思,两个都是传递句柄

    procedure TWinControl.DefaultHandler(var Message); begin then begin with TMessage(Message) do begin ...

  4. 《Java从入门到精通》src9-25

    find . -name *.java |xargs  -i sh -c "echo {};cat {}" > ../all.java[op@TIM src]$ cat al ...

  5. JAVA Useful Program(1)

    public static void main(String[] args){       //字符串有整型的相互转换          String str=String.valueOf(123); ...

  6. linux shell编程指南第十八章------控制流结构

    在书写正确脚本前,大概讲一下退出状态.任何命令进行时都将返回一个退出状态.如 果要观察其退出状态,使用最后状态命令: $ echo $? 主要有4种退出状态.前面已经讲到了两种,即最后命令退出状态$ ...

  7. perl 使用cookie

    use Net::SMTP; use LWP::UserAgent; use HTTP::Cookies; use HTTP::Headers; use HTTP::Response; use Enc ...

  8. Codeforces Round #275 (Div. 2) C - Diverse Permutation (构造)

    题目链接:Codeforces Round #275 (Div. 2) C - Diverse Permutation 题意:一串排列1~n.求一个序列当中相邻两项差的绝对值的个数(指绝对值不同的个数 ...

  9. Swift - 访问控制(private,internal,public)

    在Swift语言中,访问修饰符有三种,分别为private,internal和public.同时,Swift对于访问权限的控制,不是基于类的,而是基于文件的.其区别如下: 1,private priv ...

  10. 【LeetCode】Min Stack 解题报告

    [题目] Design a stack that supports push, pop, top, and retrieving the minimum element in constant tim ...