***************************************转载请注明出处:http://blog.csdn.net/lttree***************************************

畅通project

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 15572    Accepted Submission(s): 6462

Problem Description
省政府“畅通project”的目标是使全省不论什么两个村庄间都能够实现公路交通(但不一定有直接的公路相连。仅仅要能间接通过公路可达就可以)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编敲代码。计算出全省畅通须要的最低成本。
 
Input
測试输入包括若干測试用例。每一个測试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 )。随后的 N 

行相应村庄间道路的成本,每行给出一对正整数。各自是两个村庄的编号。以及此两村庄间道路的成本(也是正整数)。为简单起见。村庄从1到M编号。当N为0时。所有输入结束,相应的结果不要输出。

 
Output
对每一个測试用例,在1行里输出全省畅通须要的最低成本。若统计数据不足以保证畅通,则输出“?

”。

 
Sample Input
3 3
1 2 1
1 3 2
2 3 4
1 3
2 3 2
0 100
 
Sample Output
3
?
 
Source
 


最小生成树的基础题目,畅通project。
赤裸裸的求最小生成树。
额外加了一点要推断 能否构成最小生成树。

这次,我用的Kruskal算法。
Kruskal 构建最小生成树:
大体,就是先依照边长进行排序(由小到大),
然后再向外加边,
加边的时候推断是否能构成回路,假设能构成回路,就不能加边。

为什么这么做是对的呢?
首先,要知道。最小生成树,一定不会出现回路。
Why?自己算算。。

o(╯□╰)o。。。

然后,我们已经将边依照小到大排序了,所以这样加边。得到的肯定是最小生成树啦~

Kruskal算法重要的就是推断回路,
这个是用 并查集 来实现的,(并查集相关可戳:http://blog.csdn.net/lttree/article/details/23820679

然后,最后再用并查集Find函数来找找,是否全部的点都在同一个集合,假设不在,输出?

恩。OK~
/****************************************
*****************************************
* Author:Tree *
*From :http://blog.csdn.net/lttree *
* Title : 畅通project *
*Source: hdu 1863 *
* Hint : 最小生成树(Kruskal) *
*****************************************
****************************************/ #include <stdio.h>
#include <algorithm>
using namespace std;
struct EDGE
{
int u,v,cost;
}eg[100001];
int n,m,father[100001]; bool cmp(EDGE e1,EDGE e2)
{
return e1.cost<e2.cost;
} // 并查集 初始化函数
void Init( int m )
{
int i;
for(i=1;i<=m;i++)
father[i]=i;
}
// 并查集 查找函数
int Find(int x)
{
while(father[x]!=x)
x=father[x];
return x;
}
// 并查集 合并函数
void Combine(int a,int b)
{
int temp_a,temp_b;
temp_a=Find(a);
temp_b=Find(b); if(temp_a!=temp_b)
father[temp_a]=temp_b;
} // 最小生成树 Kruskal 算法
int Kruskal( void )
{
EDGE e;
int i,res;
sort(eg,eg+n,cmp);
// 并查集 初始化
Init(m); // 构建最小生成树
res=0;
for( i=0;i<n;++i )
{
e=eg[i];
if( Find(e.u)!=Find(e.v) )
{
Combine(e.u,e.v);
res+=e.cost;
}
}
return res;
} int main()
{
int i,ans;
bool bl;
while( scanf("%d%d",&n,&m) && n )
{
for( i=0;i<n;++i )
scanf("%d%d%d",&eg[i].u,&eg[i].v,&eg[i].cost);
ans=Kruskal(); // 是否全部的点都在同一个集合
bl=true;
for(i=2;i<=m;++i)
if( Find(1)!=Find(i) )
{
bl=false;
break;
} if( bl ) printf("%d\n",ans);
else printf("?\n");
}
return 0;
}

又搞了搞最小生成树的Prim算法。

。。

Prim算法就是 从一个点慢慢扩展到全图。


原理:
就是从一个点出发,然后从全部与这个点直接相连的点中,找权值最小的那条边,进行扩展。

可是,不用每次都寻找。仅仅须要在增加一个点后,
更新这个集合到其它各个点的距离,就可以。


Prim和Kruskal差别:
我的理解是:
Prim是一个集合战斗。慢慢扩展。一个个吞并,最后构成一个大树。
而Kruskal 是多个集合(≥1,也可能是一个集合) 分别作战,最后合并成一个大树。


Prim和Kruskal优劣性:
Prim须要每次都维护mincost数组(距离各个点的最短距离)。所以须要O(n^2)
可是同最短路的Dijkstra一样。假设用 堆 来维护,则复杂度可降到 O(n log n)
Kruskal算法仅仅是在排序上最费时,算法复杂度可看做 O( n log n )

本题的Prim算法:
/****************************************
*****************************************
* Author:Tree *
*From :http://blog.csdn.net/lttree *
* Title : 畅通project *
*Source: hdu 1863 *
* Hint : 最小生成树(Prim ) *
*****************************************
****************************************/
#include <stdio.h>
#include <string.h> #define RANGE 101
#define MAX 0x7fffffff
int cost[RANGE][RANGE];
int mincost[RANGE];
bool used[RANGE]; // n个点,m条边
int n,m; int Min(int a,int b)
{
return a<b? a:b;
} void prim( void )
{
// sum 记录最小生成树权值
int i,v,u,sum;
// 从1到各个点距离,初始化used数组
for( i=1;i<=n;++i )
{
used[i]=false;
mincost[i]=cost[1][i];
}
sum=0; while( true )
{
v=-1; // 从没有连接到的点中,找近期的点
for( u=1;u<=n;++u )
if( !used[u] && (v==-1 || mincost[u]<mincost[v]) )
v=u; if( v==-1 ) break;
if( mincost[v]==MAX ) break; used[v]=true;
sum+=mincost[v]; // 更新到各个点的距离
for( u=1;u<=n;++u )
mincost[u]=Min( mincost[u],cost[v][u] );
} // 推断是否能构成最小生成树
for( i=1;i<=n;++i )
{
if( used[i]==false )
{
printf("? \n");
return;
}
}
printf("%d\n",sum);
} int main()
{
int i,j;
int u,v,c; while( scanf("%d%d",&m,&n) && m )
{
// init cost by MAX
for( i=1;i<=n;++i )
for( j=1;j<=i;++j )
{
if( i==j ) cost[i][j]=0;
else cost[i][j]=cost[j][i]=MAX;
}
for( i=0;i<m;++i )
{
scanf("%d%d%d",&u,&v,&c);
cost[u][v]=cost[v][u]=c;
} prim();
}
return 0;
}

ACM-最小生成树之畅通project——hdu1863的更多相关文章

  1. hdu 1863 畅通project kruskal || prim

    简单最小生成树,畅通project.这三道题目都是练习最小生成树的. 注意一下推断是否有通路时,kruskal能够推断每一个点的祖先是否同样.prim能够推断每一个点是否都加进集合里面了,也就是说是否 ...

  2. HDU1863 畅通project 【最小生成树Prim】

    畅通project Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  3. hdu1863 畅通project(判定最小生成树)

    畅通project Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  4. ACM-光滑最小生成树project——hdu1863

    ***************************************转载请注明出处:http://blog.csdn.net/lttree************************** ...

  5. HDU 1863 畅通project (最小生成树是否存在)

    题意 中文 入门最小生成树  prim大法好 #include<cstdio> #include<cstring> using namespace std; const int ...

  6. hdu 1233(还是畅通project)(prime算法,克鲁斯卡尔算法)(并查集,最小生成树)

    还是畅通project Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  7. 8-06. 畅通project之局部最小花费问题(35)(最小生成树_Prim)(ZJU_PAT)

    题目链接:http://pat.zju.edu.cn/contests/ds/8-06 某地区经过对城镇交通状况的调查.得到现有城镇间高速道路的统计数据,并提出"畅通project" ...

  8. hdu1879 继续畅通project(最小生成树)

    继续畅通project Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  9. hdu 1875 畅通project再续(kruskal算法计算最小生成树)

    畅通project再续 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

随机推荐

  1. WPF Multi-Touch 开发:基础触屏操作(Raw Touch)

    原文 WPF Multi-Touch 开发:基础触屏操作(Raw Touch) 多点触控(Multi-Touch)就是通过与触屏设备的接触达到人与应用程序交互的操作过程.例如,生活中经常使用的触屏手机 ...

  2. Mixtile LOFT

    日前,国内电子原型类开发团队Mixtile(深圳致趣科技)新推出的 Mixtile LOFT套件,受到业内著名的海外科技网站CNXSoft的关注和报道. 如果要阅读相关的原文报道,可点击这里.下面摘录 ...

  3. CentOS6使用第三方yum源安装更多rpm软件包

    引言:       CentOS自带的yum源中rpm包数量有限,很多时候找不到我们需的软件包,(例如:要安装网络连接查看软件iftop,默认设置下无法使用yum命令安装),下面教大家在CentOS ...

  4. hdu4722之简单数位dp

    Good Numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tot ...

  5. Java8 Lamdba表达式 001

    在一个已经存在的编程语言里非常少有对现有的生态系统起重大影响的新特性.Lambda表达式对于Java语言就是这样的意义的存在.简单来说,Lambda表达式提供了便利的方式去创建一个匿名的功能.提供了一 ...

  6. TortoiseSVN 文件关联图标不显示的解决方法

    对于SVN来说,因为每个图标都代表着不同的含义,预示着不同的状态,是指示灯的作用,如果没有正确的图标很可能造成数据的丢失等 之前看了网上其他人写的帖子,,有一些是直接删除注册表下“ShellIconO ...

  7. C# -- 什么是方法签名?

    签名指的是返回值和参数. 比如 : public void A ( int p1,int p2){} public void B ( int q1,int q2){} 的签名相同. 而 public ...

  8. UML03-类图

    1.在类图中,聚合关系表达总体与局部的关系. 2.请根据下面的需求,画出用例图和类图. 系统允许管理员通过磁盘加载存货数据来运行存货清单报告: 管理员通过从磁盘加载存货数据.向磁盘保存存货数据来更新存 ...

  9. input标签的hidden属性的应用及作用

    定义:传输关于客户端/服务器交互的状态信息. Transmits state information about client/server interaction. 解释: 此元素在页面中不显示,在 ...

  10. hihoCoder 1014trie树(字典树)

    hihoCoder 1014 题目提示已经很清楚了~ 贴代码…… #include <iostream> #include <cstdio> #include <cstr ...