97. Interleaving String

Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2.

For example, Given: s1 = "aabcc", s2 = "dbbca",

When s3 = "aadbbcbcac", return true.

When s3 = "aadbbbaccc", return false.

类似于最长公共子序列,从字符尾部开始处理,解题思路很容易找到,递归来做很简单,但是会超时。

class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s3.length() != s1.length() + s2.length())
return false;
return isInterleave(s1, s2, s3, s1.length() - 1, s2.length() - 1, s3.length() - 1);
}
private:
bool isInterleave(string &s1, string &s2, string &s3, int i1, int i2, int i3) {
if(i3 < 0) //i3最先到-1
return i1 < 0 && i2 < 0;
return (s1[i1] == s3[i3] && isInterleave(s1, s2, s3, i1 - 1, i2, i3 - 1)) ||
(s2[i2] == s3[i3] && isInterleave(s1, s2, s3, i1, i2 - 1, i3 - 1));
}
};

其实递归中用不上i1、i2、i3这3个状态标志,因为任意两个标志可以表示第三个标志,状态的设计对解题有时很关键。

可以看出该问题满足最优子结构特征和重叠子问题特征,那么试着使用动态规划来改进时间复杂度。

dp[i][j]表示s[0..i]s2[0..j]匹配s3[0..(i + j)],则状态转移方程为:

dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]) || (dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]),子问题数目为O(n2),每个子问题需要用到O(n0)个子问题的结果,跟最长公共子序列问题一样,同属于2D/0D问题。

这是一个二维动态规划问题,边界条件即当i = 0j = 0时,当达到边界条件时就退化为一维动态规划问题。

i = 0时,状态转移方程退化为dp[0][j] = (dp[0][j - 1] && s2[j - 1] == s3[j - 1])

j = 0时,状态转移方程退化为dp[i][0] = (dp[i - 1][0] && s1[i - 1] == s3[i - 1])

可以提前把边界情况计算好,也可以边填表边计算,一般很难说哪种好一些,不过在该情况下实测边填表边计算要好一些。

状态转移图如下,横轴表示s1,纵轴表示s2,其中每一个状态必须访问图中左下角的状态,那么可以先解决左下角的子问题,再计算原问题,这样避免重复计算,最终返回dp[s1.length()][s2.length()]即可。该算法时间复杂度为O(N2),空间复杂度为O(N2)。

提前把边界情况计算好,代码如下。

class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s3.length() != s1.length() + s2.length())
return false;
vector<vector<bool>> dp(s1.length() + 1, vector<bool>(s2.length() + 1, true));
for(size_t i = 1; i <= s1.length(); ++i)
dp[i][0] = dp[i - 1][0] && s1[i - 1] == s3[i - 1];
for(size_t j = 1; j <= s2.length(); ++j)
dp[0][j] = dp[0][j - 1] && s2[j - 1] == s3[j - 1];
for(size_t i = 1; i <= s1.length(); ++i) {
for(size_t j = 1; j <= s2.length(); ++j) {
dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]) ||
(dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]);
}
}
return dp[s1.length()][s2.length()];
}
}; //使用滚动数组优化
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s1.length() + s2.length() != s3.length())
return false;
if(s1.length() < s2.length())
return isInterleave(s2, s1, s3);
vector<bool> dp(s2.length() + 1, true);
for(size_t i = 1; i <= s2.length(); ++i)
dp[i] = s2[i - 1] == s3[i - 1] && dp[i - 1];
for(size_t i = 1; i <= s1.length(); ++i) {
dp[0] = s1[i - 1] == s3[i - 1] && dp[0];
for(size_t j = 1; j <= s2.length(); ++j)
dp[j] = (dp[j] && s1[i - 1] == s3[i + j - 1]) ||
(dp[j - 1] && s2[j - 1] == s3[i + j - 1]);
}
return dp[s2.length()];
}
};

边填表边计算,代码如下。

class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s3.length() != s1.length() + s2.length())
return false;
bool dp[s1.length() + 1][s2.length() + 1];
for(size_t i = 0; i <= s1.length(); i++) {
for(size_t j = 0; j <= s2.length(); j++) {
if(i == 0 && j == 0)
dp[i][j] = true;
else if(i == 0)
dp[i][j] = (dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]);
else if(j == 0)
dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]);
else
dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]) ||
(dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]);
}
}
return dp[s1.length()][s2.length()];
}
};

二维动态规划——Interleaving String的更多相关文章

  1. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  2. 543A - Writing Code(二维动态规划)

    题意:现在要写m行代码,总共有n个文件,现在给出第i个文件每行会出现v[i]个bug,问你在bug少于b的条件下有多少种安排 分析:定义dp[i][j][k],i个文件,用了j行代码,有k个bug 状 ...

  3. 二维动态规划&&二分查找的动态规划&&最长递增子序列&&最长连续递增子序列

    题目描述与背景介绍 背景题目: [674. 最长连续递增序列]https://leetcode-cn.com/problems/longest-continuous-increasing-subseq ...

  4. [leetcode] 72. 编辑距离(二维动态规划)

    72. 编辑距离 再次验证leetcode的评判机有问题啊!同样的代码,第一次提交超时,第二次提交就通过了! 此题用动态规划解决. 这题一开始还真难到我了,琢磨半天没有思路.于是乎去了网上喵了下题解看 ...

  5. HDU 1117 免费馅饼 二维动态规划

    思路:a[i][j]表示j秒在i位置的数目,dp[i][j]表示j秒在i位置最大可以收到的数目. 转移方程:d[i][j]=max(dp[i-1][j],dp[i-1][j-1],dp[i-1][j+ ...

  6. 二维动态规划——Palindrome

    Palindrome Description A palindrome is a symmetrical string, that is, a string read identically from ...

  7. LeetCode 笔记系列 20 Interleaving String [动态规划的抽象]

    题目: Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. For example,Given: ...

  8. LeetCode之“动态规划”:Interleaving String

    题目链接 题目要求: Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. For example ...

  9. [LeetCode] Interleaving String - 交织的字符串

    题目如下:https://oj.leetcode.com/problems/interleaving-string/ Given s1, s2, s3, find whether s3 is form ...

随机推荐

  1. 解决cookie 跨iframe

    document.cookie = "name=caoyc;path=/"document.cookie = "age=13;path=/"//时间可以不要,但 ...

  2. Laravel Auth验证

    laravel自带了auth类和User模型来帮助我们很方便的实现用户登陆.判断. 首先,先配置一下相关参数 app/config/auth.php: model 指定模型 table 指定用户表 p ...

  3. iOS之UITableView的上拉刷新

    #import "ViewController.h" #import "UITableView+PullRefresh.h" @interface ViewCo ...

  4. js动画(三)

    咳咳咳咳,感冒了感冒了,鼻塞,蓝瘦啊!嘴巴也开裂,哎,心疼自己.想到这是第三只唇膏了!只怪,放荡不倔爱自由, 行驶在冷风路上么,北风那个吹啊吹啊吹啊,好了,发神经发完了,接下来进入正题,严肃脸.(字数 ...

  5. java丢手帕 约瑟夫问题

    一.问题描述:     n个人围成一个圈,编号为1~n,从第一号开始报数,报到3的倍数的人离开,一直数下去,直到最后只有一个人,求此人编号. 二.问题提示:  使用一维数组,数组元素初始为1,从1开始 ...

  6. [Unity Socket]在Unity中如何实现异步Socket通信技术

    在刚刚开发Unity项目的过程中,需要用到即时通信功能来完成服务器与客户端自定义的数据结构封装. 现在将部分主要功能的实现代码抽取出来实现了可以异步Socket请求的技术Demo. 客户端脚本Clie ...

  7. java XML转JSON格式

    标签: XML转Json json 2014-05-20 20:55 6568人阅读 评论(6) 收藏 举报  分类: [J2SE基础](20)  代码如下所示,从这个例子中发现了代码库的重要性,如果 ...

  8. request参数集合绑定实体实现defaultmodebinder

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...

  9. Druid的简介及功能

    Druid首先是一个数据库连接池.Druid是目前最好的数据库连接池,在功能.性能.扩展性方面,都超过其他数据库连接池,包括DBCP.C3P0.BoneCP.Proxool.JBoss DataSou ...

  10. Scott用户的四张表:

    Scott用户的四张表: 转载:http://www.cnblogs.com/mchina/archive/2012/09/06/2649951.html 在Oracle的学习之中,重点使用的是SQL ...