#include<iostream>

#include<iomanip>

using
namespace std;

int main()

{

double
x,y,yn,h,temp,f;

x=0;      //对x赋初值

y=1;      //对y赋初值

h=0.1;      //步长设置为0.1

cout<<setiosflags(ios::left);

cout<<setw(20)<<"y的计算值";

cout<<setw(20)<<"y的理论值";

cout<<setw(20)<<"x的值";

cout<<setw(20)<<"误差"<<endl;

cout<<setw(20)<<y;

cout<<setw(20)<<y;

cout<<setw(20)<<x;

cout<<setw(20)<<0<<endl;

for
(int i=0;i<10;i++)

{

temp=y;      //每次迭代之前y未变化的值,用于后面的计算

y=y+h*(y-2*x/y);      //使y显化

f=y-2*x/y;      //保存未改变的f(x,y)的值

x+=h;

do

{

yn=y;

y=temp+h/2*(f+(y-(2*x/y)));

}

while
(abs(yn-y)>0.0000001);

cout<<setw(20)<<y;      //输出y的新值

cout<<setw(20)<<sqrtf(1+2*x);      //计算y的理论值

cout<<setw(20)<<x;      //输出x的新值

cout<<setw(20)<<abs(y-sqrtf(1+2*x))<<endl;      //计算误差

}

return
0;

}

梯形法求解常微分方程(c++)的更多相关文章

  1. 破圈法求解最小生成树c语言实现(已验证)

    破圈法求解最小生成树c语言实现(已验证) 下面是算法伪代码,每一个算法都取一个图作为输入,并返回一个边集T. 对该算法,证明T是一棵最小生成树,或者证明T不是一棵最小生成树.此外,对于每个算法,无论它 ...

  2. POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)

    题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...

  3. Coursera在线学习---第一节.梯度下降法与正规方程法求解模型参数比较

    一.梯度下降法 优点:即使特征变量的维度n很大,该方法依然很有效 缺点:1)需要选择学习速率α 2)需要多次迭代 二.正规方程法(Normal Equation) 该方法可以一次性求解参数Θ 优点:1 ...

  4. 逆波兰法求解数学表达示(C++)

    主要是栈的应用,里面有两个函数deleteSpace(),stringToDouble()在我还有一篇博客其中:对string的一些扩展函数. 本程序仅仅是主要的功能实现,没有差错控制. #inclu ...

  5. 0-1背包问题——回溯法求解【Python】

    回溯法求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 回溯法核心:能进则进,进不了则换,换不了则退.(按照 ...

  6. 0-1背包问题蛮力法求解(c++版本)

    // 0.1背包求解.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream>   #define ...

  7. 算法——八皇后问题(eight queen puzzle)之回溯法求解

    八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...

  8. USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)

    Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...

  9. MATLAB求解常微分方程:ode45函数与dsolve函数

    ode45函数无法求出解析解,dsolve可以求出解析解(若有),但是速度较慢. 1.      ode45函数 ①求一阶常微分方程的初值问题 [t,y] = ode45(@(t,y)y-2*t/y, ...

随机推荐

  1. js中console.info的使用

    语法:console.info(obj1 [, obj2, ..., objN]);console.info(msg [, subst1, ..., substN]); 参数obj1 ... objN ...

  2. 英文FRAUNCE法国FRAUNCE单词

    France Alternative forms Fraunce In Fraunce, the inhabitants of one city were driven out and forced ...

  3. ORACLE SQL 笔记

    根据数据权限查询 SELECT * FROM ( SELECT ROWNUM AS ROWNO, AA.* FROM ( SELECT DISTINCT A.OBJECTID InstanceID , ...

  4. SpringBoot 传入JSON对象参数

    1.请求参数格式必须是正确的JSON. 2.在入参中使用注解@RequestBody,用于接收JSON参数,使其自动转对象 3.关于lombok在此产生的一点小坑,@Builder对@RequestB ...

  5. 使用sudo进行Linux权限升级技巧

    0x00 前言 在我们之前的文章中,我们讨论了如何使用SUID二进制文件和/etc/passwd 文件的Linux权限提升技巧,今天我们发布了另一种“使用Sudoers文件进行Linux权限提示技巧” ...

  6. HttpClient使用详解与实战一:普通的GET和POST请求

    简介 HttpClient是Apache Jakarta Common下的子项目,用来提供高效的.最新的.功能丰富的支持HTTP协议的客户端编程工具包,并且它支持HTTP协议最新的版本和建议. Htt ...

  7. WC_Project

    个人项目:WC_Project 一.GitHub项目地址 GitHub项目地址:https://github.com/ting9500/WC_GNIT.git 二.PSP表格 PSP2.1 Perso ...

  8. MySQL Replication--复制延迟03--Seconds_Behind_Master计算

    Seconds_Behind_Master计算原理 当从库上复制IO进程和复制SQL进程正常运行,且SQL线程处于执行状态而非等待IO进程同步BINLOG时,复制延迟时间计算如下: 复制延迟时间(Se ...

  9. 浅谈HDFS(三)之DataNote

    DataNode工作机制 一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳. DataNode启动后向Nam ...

  10. 整型 字符串方法 for循环

    整型 # 整型 -- 数字 (int) # 用于比较和运算的 # 32位 -2 ** 31 ~ 2 ** 31 -1 # 64位 -2 ** 63 ~ 2 ** 63 -1 # + - * / // ...