$des$

https://loj.ac/problem/10151

$sol$

区间dp

$f_{i, j}$ 表示区间 $[l, r]$ 合并的最大值

枚举中间点 $k$

$f_{i, j} =max(f_{i, j}, f_{i, k} + f_{k + 1, j} + (w_r + w_{l - 1}) \times w_k)$

对于方案的输出,$g_{i, j}$ 表示区间最优断点

bfs输出

#include <bits/stdc++.h>

const int N = ;

int f[N][N], g[N][N], w[N], n, sum[N];

int main() {
std:: cin >> n;
for(int i = ; i <= n; i ++) std:: cin >> w[i];
for(int i = ; i <= n; i ++) sum[i] = sum[i - ] + w[i];
for(int i = ; i <= n; i ++)
for(int j = ; j <= n; j ++)
f[i][j] = ( << );
for(int i = ; i <= n; i ++) f[i][i] = ;
for(int len = ; len <= n; len ++) {
for(int l = ; l + len - <= n; l ++) {
int r = l + len - , add = -;
for(int k = l; k < r; k ++) {
int now = f[l][k] + f[k + ][r] + (w[r] + w[l]) * w[k];
if(now > add) {
add = now, g[l][r] = k;
}
}
f[l][r] = add;
}
}
std:: cout << f[][n] << "\n";
static int Answer[N], js = ;
std:: queue < std:: pair<int, int> > Q;
Q.push(std:: make_pair(, n));
while(!Q.empty()) {
std:: pair <int, int> tp = Q.front();
Q.pop();
Answer[++ js] = g[tp.first][tp.second];
if(tp.first != g[tp.first][tp.second]) Q.push(std:: make_pair(tp.first, g[tp.first][tp.second]));
if(tp.second != g[tp.first][tp.second] + ) Q.push(std:: make_pair(g[tp.first][tp.second] + , tp.second));
}
for(int i = ; i <= js; i ++) std:: cout << Answer[i] << " ";
return ;
}

71: libreoj #10151 区间dp的更多相关文章

  1. 72: libreoj #10147 区间dp

    $des$ 将 n 堆石子绕圆形操场排放,现要将石子有序地合并成一堆.规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆的石子数记做该次合并的得分. 请编写一个程序,读入堆数 nnn 及每堆的石子数 ...

  2. 70: libreoj #2424 区间dp

    $des$ $sol$ $f_{i, j, k} => a => [1, i], b => [1, j], a_i = b_j | a_i != b_j , a_i => 0 ...

  3. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  4. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  5. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  6. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  7. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  8. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  9. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

随机推荐

  1. 在O(1)的时间内删除链表节点

    题目: 在O(1)的时间内删除链表节点.给定链表的头指针和待删除的节点指针,定义一个函数在O(1)的时间内删除该节点. 剑指offer的思路,顿时觉得极妙.删除节点node1,先把其下一个节点node ...

  2. .net Aop 实现原理

    本文实现所有继承BaseModel的类都通过代理拦截 using System; using System.Reflection; using System.Collections.Generic; ...

  3. .net 后台以post方式调用微信公众平台接口

    public class Fresult { public int errcode { get; set; } public string errmsg { get; set; } public st ...

  4. 长期作业:web框架源码剖析

    Tornado框架 1.1. 手动安装 1.2. 从简单的开始:分析红框部分的源码 Django框架

  5. react新旧生命周期

    React16.3.0之前生命周期 16.3开始建议使用新的生命周期

  6. JS去除字符串中的中括号

    var str = '这是一个字符串[html]语句;[html]字符串很常见'; alert(str.replace(/\[|]/g,''));//移除字符串中的所有[]括号(不包括其内容) //输 ...

  7. unity shader入门(四):高光

    高光反射计算公式(phong模型)Cspecular=(Clight*Mspecular)max(0,v*r)mgloss mgloss为材质的官泽度,也成反射度,控制高光区域亮点有多大 Mspecu ...

  8. vue-cli 移动端项目如何在手机上调试预览

    这里分享下如何在webpack工具构建下的vue项目,在手机端调试和预览,言归正传. 1.电脑和手机连接到同一个WIFI a.台式电脑和手机同时链接一个路由器,使用同一个wifi: b.笔记本也可以直 ...

  9. js 数组去重求和 (转载)

    方法一:js数组id去重,value值相加问题 来源:https://www.jianshu.com/p/8f79e31b46ed // js let arr = [ { id: 1, value: ...

  10. MySQL Lock--MySQL INSERT加锁学习

    准备测试数据: ## 开启InnoDB Monitor SET GLOBAL innodb_status_output=ON; SET GLOBAL innodb_status_output_lock ...