神经网络入门回顾(感知器、多层感知器)中整理了关于感知器和多层感知器的理论,这里实现关于与门与非门或门异或门的代码,以便对感知器有更好的感觉。

此外,我们使用 pytest 框架进行测试。

pip install pytest

与门、与非门、或门

通过一层感知器就可以实现与门与非门或门

先写测试代码 test_perception.py:

 from perception import and_operate, nand_operate, or_operate

 def test_and_operate():
"""
测试与门
:return:
"""
assert and_operate(1, 1) == 1
assert and_operate(1, 0) == 0
assert and_operate(0, 1) == 0
assert and_operate(0, 0) == 0 def test_nand_operate():
"""
测试与非门
:return:
"""
assert nand_operate(1, 1) == 0
assert nand_operate(1, 0) == 1
assert nand_operate(0, 1) == 1
assert nand_operate(0, 0) == 1 def test_or_operate():
"""
测试或门
:return:
"""
assert or_operate(1, 1) == 1
assert or_operate(1, 0) == 1
assert or_operate(0, 1) == 1
assert or_operate(0, 0) == 0

写完测试代码,后面直接输入命令  pytest -v  即可测试代码。

这三个门的权重偏置是根据人的直觉或者画图得到的,并且不是唯一的。以下是简单的实现,在 perception.py 中写上:

 import numpy as np

 def step_function(x):
"""
阶跃函数
:param x:
:return:
"""
if x <= 0:
return 0
else:
return 1 def and_operate(x1, x2):
"""
与门
:param x1:
:param x2:
:return:
"""
x = np.array([x1, x2])
w = np.array([0.5, 0.5])
b = -0.7
return step_function(np.sum(w * x) + b) def nand_operate(x1, x2):
"""
与非门
:param x1:
:param x2:
:return:
"""
x = np.array([x1, x2])
w = np.array([-0.5, -0.5])
b = 0.7
return step_function(np.sum(w * x) + b) def or_operate(x1, x2):
"""
或门
:param x1:
:param x2:
:return:
"""
x = np.array([x1, x2])
w = np.array([0.5, 0.5])
b = -0.3
return step_function(np.sum(w * x) + b)

运行  pytest -v 确认测试通过。

========================================================================== test session starts ===========================================================================
platform darwin -- Python 3.6.8, pytest-5.1.2, py-1.8.0, pluggy-0.12.0 -- /Users/mac/.virtualenvs/work/bin/python3
...
collected 3 items test_perception.py::test_and_operate PASSED [ 33%]
test_perception.py::test_nand_operate PASSED [ 66%]
test_perception.py::test_or_operate PASSED [100%] =========================================================================== 3 passed in 0.51s ============================================================================

异或门

如上图所示,由于异或门不是线性可分的,因此需要多层感知器的结构。

使用两层感知器可以实现异或门。

修改 test_perception.py 文件,加入异或门的测试代码 :

from perception import and_operate, nand_operate, or_operate, xor_operate

以及

def test_xor_operate():
"""
测试异或门
:return:
"""
assert xor_operate(1, 1) == 0
assert xor_operate(1, 0) == 1
assert xor_operate(0, 1) == 1
assert xor_operate(0, 0) == 0

在 perception.py 文件里加入异或门的函数:

def xor_operate(x1, x2):
"""
异或门
:param x1:
:param x2:
:return:
"""
s1 = nand_operate(x1, x2)
s2 = or_operate(x1, x2)
return and_operate(s1, s2)

我们通过与非门和或门的线性组合实现了异或门。

运行命令  pytest -v 测试成功。

========================================================================== test session starts ===========================================================================
platform darwin -- Python 3.6.8, pytest-5.1.2, py-1.8.0, pluggy-0.12.0 -- /Users/mac/.virtualenvs/work/bin/python3
...
collected 4 items test_perception.py::test_and_operate PASSED [ 25%]
test_perception.py::test_nand_operate PASSED [ 50%]
test_perception.py::test_or_operate PASSED [ 75%]
test_perception.py::test_xor_operate PASSED [100%] =========================================================================== 4 passed in 0.60s ============================================================================

原文作者:雨先生
原文链接:https://www.cnblogs.com/noluye/p/11465389.html  
许可协议:知识共享署名-非商业性使用 4.0 国际许可协议

参考

Python实现感知器的逻辑电路(与门、与非门、或门、异或门)的更多相关文章

  1. python之感知器-从零开始学深度学习

    感知器-从零开始学深度学习 未来将是人工智能和大数据的时代,是各行各业使用人工智能在云上处理大数据的时代,深度学习将是新时代的一大利器,在此我将从零开始记录深度学习的学习历程. 我希望在学习过程中做到 ...

  2. python机器学习——感知器

    最近在看机器学习相关的书籍,顺便把每天阅读的部分写出来和大家分享,共同学习探讨一起进步!作为机器学习的第一篇博客,我准备从感知器开始,之后会慢慢更新其他内容. 在实现感知器算法前,我们需要先了解一下神 ...

  3. 深度学习炼丹术 —— Taoye不讲码德,又水文了,居然写感知器这么简单的内容

    手撕机器学习系列文章就暂时更新到此吧,目前已经完成了支持向量机SVM.决策树.KNN.贝叶斯.线性回归.Logistic回归,其他算法还请允许Taoye在这里先赊个账,后期有机会有时间再给大家补上. ...

  4. 感知器算法--python实现

    写在前面: 参考: 1  <统计学习方法>第二章感知机[感知机的概念.误分类的判断]   http://pan.baidu.com/s/1hrTscza 2   点到面的距离 3   梯度 ...

  5. 机器学习之感知器算法原理和Python实现

    (1)感知器模型 感知器模型包含多个输入节点:X0-Xn,权重矩阵W0-Wn(其中X0和W0代表的偏置因子,一般X0=1,图中X0处应该是Xn)一个输出节点O,激活函数是sign函数. (2)感知器学 ...

  6. 感知器及其Python实现

    感知器是由美国计算机科学家罗森布拉特(F.Roseblatt)于1957年提出的.感知器可谓是最早的人工神经网络.单层感知器是一个具有一层神经元.采用阈值激活函数的前向网络.通过对网络权值的训练,可以 ...

  7. 感知器做二分类的原理及python实现

    本文目录: 1. 感知器 2. 感知器的训练法则 3. 梯度下降和delta法则 4. python实现 1. 感知器[1] 人工神经网络以感知器(perceptron)为基础.感知器以一个实数值向量 ...

  8. 机器学习:Python实现单层Rosenblatt感知器

    如果对Rosenblatt感知器不了解,可以先查看下相关定义,然后对照下面的代码来理解. 代码中详细解释了各步骤的含义,有些涉及到了数学公式的解释. 这篇文章是以理解Rosenblatt感知器的原理为 ...

  9. 感知器python

    感知器学习的目标是求得一个能够将训练集正实例点和负实例点·完全正确分开的分离超平面.即找到这超平面的参数w,b. 超平面定义 w*x+b=0 其中w是参数,x是数据.公式很好理解以二维平面为例,w有两 ...

随机推荐

  1. impala入门

    一.概述 Impala 是参照google 的新三篇论文Dremel(大批量数据查询工具)的开源实现,功能类似shark(依赖于hive)和Drill(apache),impala 是clouder ...

  2. oracle--dump 块与块分析 (dump 深入实践二)

    一,建立测试环境 01,一个oracle数据库环境 02,具体数据库实验环境配置 SQL> create user test1 identified by kingle; User create ...

  3. 微信小程序前端调用后台方法并获取返回值

    wxml代码 <wxs src="../../wxs/string.wxs" module="tools" /> <!-- 调用tools.i ...

  4. Visual Studio 调试系列10 附加到正在运行的进程

    系列目录     [已更新最新开发文章,点击查看详细] 可将 Visual Studio 调试器附加到本地或远程计算机上正在运行的进程. 进程运行后,在 Visual Studio 中选择“调试” & ...

  5. Scala 定义复杂枚举

    通常我们需要枚举参数不止两个,Scala提供的枚举类最多定义两个参数:id:Int与name:String.不能满足我们通常要求. object BaseEntryEnum extends Enume ...

  6. Knative Serving 进阶: Knative Serving SDK 开发实践

    作者 | 阿里云智能事业群技术专家 牛秋霖(冬岛) 导读:通过前面的一系列文章你已经知道如何基于 kubectl 来操作 Knative 的各种资源.但是如果想要在项目中集成 Knative 仅仅使用 ...

  7. Nodejs操作MySQL数据库

    https://github.com/mysqljs/mysql   如何用nodejs操作MySql数据呢,其实写法还是简单的, 1.开始在你的node项目中 npm install mysql - ...

  8. fiddler抓包-6-Copy与Save常用技巧

    前言 我们保存会话有什么用呢?很显然就是让开发知道整个接口的入参.出参的情况,不然你截个图我还得一个一个敲或者找回我的接口重新用postman请求一下,我不信会出错. 截图还不如复制粘贴接口url.参 ...

  9. Java代码质量检查checkstyle, pmd, cpd, p3c,findbugs, jacoco, sonarquebe以及和Jenkins集成

    概述 又搞一边质量扫描插件,之前做过一遍,然后后面各种忽略,然后就放弃了,所以,应该寻找一种方法,循序渐进的实施.本次将实施一个基本的打包扫描方案,包含 checkstyle 固定团队编码风格,固定命 ...

  10. 项目Gradle版本从4.4升级到4.6

    一.背景 Gralde版本与AGP(Android Gradle Plugin)版本具有一定的对应关系,原因在于AGP实质上作为Gradle的插件,依赖于Gradle作为宿主.因此,不同的AGP版本需 ...