Design a logger system that receive stream of messages along with its timestamps, each message should be printed if and only if it is not printed in the last 10 seconds.

Given a message and a timestamp (in seconds granularity), return true if the message should be printed in the given timestamp, otherwise returns false.

It is possible that several messages arrive roughly at the same time.

Example:

Logger logger = new Logger();

// logging string "foo" at timestamp 1
logger.shouldPrintMessage(1, "foo"); returns true;

// logging string "bar" at timestamp 2
logger.shouldPrintMessage(2,"bar"); returns true;

// logging string "foo" at timestamp 3
logger.shouldPrintMessage(3,"foo"); returns false;

// logging string "bar" at timestamp 8
logger.shouldPrintMessage(8,"bar"); returns false;

// logging string "foo" at timestamp 10
logger.shouldPrintMessage(10,"foo"); returns false;

// logging string "foo" at timestamp 11
logger.shouldPrintMessage(11,"foo"); returns true;

设计一个记录系统每次接受信息并保存时间戳,然后让我们打印出该消息,前提是最近10秒内没有打印出这个消息。Uber家

解法:哈希表,建立message和timestamp之间映射,如果接收到的消息不在哈希表里,就添加到哈希表里,并返回true。如果已经存在,如果当前时间戳是否比哈希表中保存的时间戳大10秒,则更新哈希表,并返回true,否则返回false。

Java:

public class Logger{

    HashMap<String, Integer> record;

    /** Initialize your data structure here. */
public Logger() {
record= new HashMap<String, Integer>();
} /** Returns true if the message should be printed in the given timestamp, otherwise returns false.
If this method returns false, the message will not be printed.
The timestamp is in seconds granularity. */
public boolean shouldPrintMessage(int timestamp, String message) {
/* if(record.containsKey(message)){
if( timestamp-record.get(message) >=10){
record.put(message, timestamp);
return true;
}
else{
return false;
} }
else{
record.put(message, timestamp);
return true;
}*/ // 以上是非常连贯的逻辑,一步步做判断,下面是 精简后的判断条件,所以速度上快很多,但是如果没写出上面的代码,没看到重复出现的那两行,可能也不会想到下面的写法 if(record.containsKey(message) && timestamp-record.get(message)<10 ){
return false;
}
else{
record.put(message, timestamp);
return true;
} }
} /**
* Your Logger object will be instantiated and called as such:
* Logger obj = new Logger();
* boolean param_1 = obj.shouldPrintMessage(timestamp,message);
*/  

Python:

# Time:  O(1), amortized
# Space: O(k), k is the max number of printed messages in last 10 seconds
import collections class Logger(object): def __init__(self):
"""
Initialize your data structure here.
"""
self.__dq = collections.deque()
self.__printed = set() def shouldPrintMessage(self, timestamp, message):
"""
Returns true if the message should be printed in the given timestamp, otherwise returns false. The timestamp is in seconds granularity.
:type timestamp: int
:type message: str
:rtype: bool
"""
while self.__dq and self.__dq[0][0] <= timestamp - 10:
self.__printed.remove(self.__dq.popleft()[1])
if message in self.__printed:
return False
self.__dq.append((timestamp, message))
self.__printed.add(message)
return True # Your Logger object will be instantiated and called as such:
# obj = Logger()
# param_1 = obj.shouldPrintMessage(timestamp,message)  

C++:

class Logger {
public:
Logger() {} bool shouldPrintMessage(int timestamp, string message) {
if (!m.count(message)) {
m[message] = timestamp;
return true;
}
if (timestamp - m[message] >= 10) {
m[message] = timestamp;
return true;
}
return false;
} private:
unordered_map<string, int> m;
};

C++:

class Logger {
public:
Logger() {} bool shouldPrintMessage(int timestamp, string message) {
if (timestamp < m[message]) return false;
m[message] = timestamp + 10;
return true;
} private:
unordered_map<string, int> m;
};

  

  

All LeetCode Questions List 题目汇总

[LeetCode] 359. Logger Rate Limiter 记录速率限制器的更多相关文章

  1. LeetCode 359. Logger Rate Limiter (记录速率限制器)$

    Design a logger system that receive stream of messages along with its timestamps, each message shoul ...

  2. [LeetCode] Logger Rate Limiter 记录速率限制器

    Design a logger system that receive stream of messages along with its timestamps, each message shoul ...

  3. LeetCode 359 Logger Rate Limiter

    Problem: Design a logger system that receive stream of messages along with its timestamps, each mess ...

  4. 359. Logger Rate Limiter

    /* * 359. Logger Rate Limiter * 2016-7-14 by Mingyang * 很简单的HashMap,不详谈 */ class Logger { HashMap< ...

  5. 【LeetCode】359. Logger Rate Limiter 解题报告(C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 字典 日期 题目地址:https://leetcode ...

  6. [LC] 359. Logger Rate Limiter

    Design a logger system that receive stream of messages along with its timestamps, each message shoul ...

  7. LeetCode Logger Rate Limiter

    原题链接在这里:https://leetcode.com/problems/logger-rate-limiter/ 题目: Design a logger system that receive s ...

  8. Logger Rate Limiter -- LeetCode

    Design a logger system that receive stream of messages along with its timestamps, each message shoul ...

  9. Logger Rate Limiter 十秒限时计数器

    [抄题]: Design a logger system that receive stream of messages along with its timestamps, each message ...

随机推荐

  1. 微信小程序~Flex布局

    有一点需要注意的是,你的小程序要求兼容到iOS8以下版本,需要开启样式自动补全.开启样式自动补全,在“设置”—“项目设置”—勾选“上传代码时样式自动补全”.

  2. 项目笔记---WPF之Metro风格UI(转)

    写在前面 作为新年开篇的文章,当然要选择比较“Cool”的东西来分享,这自然落到了WPF身上,WPF技术自身可塑性非常强,其强大的绘图技术以及XAML技术比WinForm而言有本质的飞跃. 切入正题, ...

  3. 编程小白入门分享三:Spring AOP统一异常处理

    Spring AOP统一异常处理 简介 在Controller层,Service层,可能会有很多的try catch代码块.这将会严重影响代码的可读性."美观性".怎样才可以把更多 ...

  4. postgres —— 窗口函数入门

    注:测试数据在 postgres —— 分组集与部分聚集 中 聚集将多行转变成较少.聚集的行.而窗口则不同,它把当前行与分组中的所有行对比,并且返回的行数没有变化. 组合当前行与 production ...

  5. python zlib模块缺失报错:RuntimeError: Compression requires the (missing) zlib module

    解决方式: # yum install zlib # yum install zlib-devel 下载成功后,进入python2.7的目录,重新执行 #make #make install 此时先前 ...

  6. 学习Spring-Data-Jpa(十一)---抓取策略与实体图

    1.抓取策略 在前面说到的关联关系注解中,都有一个fetch属性,@OneToOne.@ManyToOne中都默认是FetchType.EAGER,立即获取.@OneToMany.@ManyToMan ...

  7. Tips on Python

    python是一种解释性文件,代码要通过解释器解释运行.python解释器就是python.exe这个程序. pip也是一个pip.exe的程序,是用来管理python的第三方库. 有两种执行方式:脚 ...

  8. LeetCode 988. Smallest String Starting From Leaf

    原题链接在这里:https://leetcode.com/problems/smallest-string-starting-from-leaf/ 题目: Given the root of a bi ...

  9. 推荐一款分布式微服务框架 Surging

    surging   surging 是一个分布式微服务框架,提供高性能RPC远程服务调用,采用Zookeeper.Consul作为surging服务的注册中心,集成了哈希,随机,轮询,压力最小优先作为 ...

  10. mysql 根据发音查找内容

    当前表 mysql> select * from table1; +----------+------------+-----+ | name_new | transactor | pid | ...