链接:

https://vjudge.net/problem/LightOJ-1410

题意:

In a 2D plane N persons are standing and each of them has a gun in his hand. The plane is so big that the persons can be considered as points and their locations are given as Cartesian coordinates. Each of the N persons fire the gun in his hand exactly once and no two of them fire at the same or similar time (the sound of two gun shots are never heard at the same time by anyone so no sound is missed due to concurrency). The hearing ability of all these persons is exactly same. That means if one person can hear a sound at distance R1, so can every other person and if one person cannot hear a sound at distance R2 the other N-1 persons cannot hear a sound at distance R2 as well.

The N persons are numbered from 1 to N. After all the guns are fired, all of them are asked how many gun shots they have heard (not including their own shot) and they give their verdict. It is not possible for you to determine whether their verdicts are true but it is possible for you to judge if their verdicts are consistent. For example, look at the figure above. There are five persons and their coordinates are (1, 2), (3, 1), (5, 1), (6, 3) and (1, 5) and they are numbered as 1, 2, 3, 4 and 5 respectively. After all five of them have shot their guns, you ask them how many shots each of them have heard. Now if there response is 1, 1, 1, 2 and 1 respectively then you can represent it as (1, 1, 1, 2, 1). But this is an inconsistent verdict because if person 4 hears 2 shots then he must have heard the shot fired by person 2, then obviously person 2 must have heard the shot fired by person 1, 3 and 4 (person 1 and 3 are nearer to person 2 than person 4). But their opinions show that Person 2 says that he has heard only 1 shot. On the other hand (1, 2, 2, 1, 0) is a consistent verdict for this scenario so is (2, 2, 2, 1, 1). In this scenario (5, 5, 5, 4, 4) is not a consistent verdict because a person can hear at most 4 shots.

Given the locations of N persons, your job is to find the total number of different consistent verdicts for that scenario. Two verdicts are different if opinion of at least one person is different.

思路:

计算任意两点距离,不同种类数就是距离数

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<math.h>
#include<vector>
#include<map> using namespace std;
typedef long long LL;
const int INF = 1e9; const int MAXN = 710;
const int MOD = 1e9+7; int x[MAXN], y[MAXN];
int n;
int len[MAXN*MAXN]; int GetLen(int i, int j)
{
return (x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
} int main()
{
int t, cnt = 0;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cnt);
scanf("%d", &n);
for (int i = 1;i <= n;i++)
scanf("%d%d", &x[i], &y[i]);
int pos = 0;
for (int i = 1;i <= n;i++)
{
for (int j = i+1;j <= n;j++)
len[++pos] = GetLen(i, j);
}
sort(len+1, len+1+pos);
int res = unique(len+1, len+1+pos)-(len+1);
printf(" %d\n", res+1);
} return 0;
}

LightOJ - 1410 - Consistent Verdicts(规律)的更多相关文章

  1. 1410 - Consistent Verdicts(规律)

    1410 - Consistent Verdicts   PDF (English) Statistics Forum Time Limit: 5 second(s) Memory Limit: 32 ...

  2. LightOJ 1410 Consistent Verdicts(找规律)

    题目链接:https://vjudge.net/contest/28079#problem/Q 题目大意:题目描述很长很吓人,大概的意思就是有n个坐标代表n个人的位置,每个人听力都是一样的,每人发出一 ...

  3. Fibsieve`s Fantabulous Birthday LightOJ - 1008(找规律。。)

    Description 某只同学在生日宴上得到了一个N×N玻璃棋盘,每个单元格都有灯.每一秒钟棋盘会有一个单元格被点亮然后熄灭.棋盘中的单元格将以图中所示的顺序点亮.每个单元格上标记的是它在第几秒被点 ...

  4. Harmonic Number (II) LightOJ - 1245 (找规律?。。。)

    题意: 求前n项的n/i  的和 只取整数部分 暴力肯定超时...然后 ...现在的人真聪明...我真蠢 觉得还是别人的题意比较清晰 比如n=100的话,i=4时n/i等于25,i=5时n/i等于20 ...

  5. Trailing Zeroes (III) LightOJ - 1138 不找规律-理智推断-二分

    其实有几个尾零代表10的几次方但是10=2*510^n=2^n*5^n2增长的远比5快,所以只用考虑N!中有几个5就行了 代码看别人的: https://blog.csdn.net/qq_422797 ...

  6. Trailing Zeroes (III) LightOJ - 1138 二分+找规律

    Time Limit: 2 second(s) Memory Limit: 32 MB You task is to find minimal natural number N, so that N! ...

  7. lightoj--1410--Consistent Verdicts(技巧)

    Consistent Verdicts Time Limit: 5000MS   Memory Limit: 32768KB   64bit IO Format: %lld & %llu Su ...

  8. 初次使用SQL调优建议工具--SQL Tuning Advisor

    在10g中,Oracle推出了自己的SQL优化辅助工具: SQL优化器(SQL Tuning Advisor :STA),它是新的DBMS_SQLTUNE包. 使用STA一定要保证优化器是CBO模式下 ...

  9. LightOj 1245 --- Harmonic Number (II)找规律

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1245 题意就是求 n/i (1<=i<=n) 的取整的和这就是到找规律的题 ...

随机推荐

  1. python网课自动刷课程序-------selenium+chromedriver

    python的强大之处就在于有许多已经写好的功能库提供,这些库强大且易用,对于写一些有特定功能的小程序十分方便. 现在就用pyhton的selenium+谷歌游览器写一个可以自动刷课的程序,以智慧树上 ...

  2. webapi初学项目(增删改查),webapi增删

    wenapi做了一个从数据库增删改查的项目 webapi: 1.创建项目:visual C# —> ASP.NET MVC 4 web应用程序 模板—>web api; 2.注册路由: 路 ...

  3. .NET/C# 检测电脑上安装的 .NET Framework 的版本

    原文:.NET/C# 检测电脑上安装的 .NET Framework 的版本 如果你希望知道某台计算机上安装了哪些版本的 .NET Framework,那么正好本文可以帮助你解决问题. 本文内容 如何 ...

  4. 在windows中使用PuTTy上传下载文件和目录

    打开windows的cmd,使用cd命令切换到PuTTy安装目录 C:\Users\NUC>cd C:\Program Files\PuTTY 在cmd中使用pscp命令上传下载文件 windo ...

  5. 关闭 禁止 window10 UpdateOrchestrator UsoSvc服务

    背景故事:w10流氓更新关了! 然后重启还更新? 读者肯定关过win10自动跟新服务 如图: 然后 还有这个流氓设置 然而微软还有一招啊! 前有win10 update 后有计划任务 powershe ...

  6. 从MVC -> MVVM ? 开发模式

    MVVM 到底是什么? view :由 MVC 中的 view 和 controller 组成,负责 UI 的展示,绑定 viewModel 中的属性,触发 viewModel 中的命令: viewM ...

  7. jQuery中的 AJAX

    jQuery库中支持AJAX的操作,功能十分完善 详细请参考官方文档:https://www.jquery123.com/category/ajax/ 首先需要引入jquery文件!!! $.ajax ...

  8. css列表滑动防止被底部遮住和适配屏幕长一点的机型处理

    1.移动端处理列表滑动的时候,微信底下有自带的返回页面按钮,经常会被遮住,遇到屏幕长一点的,下面会短一大截,以下用此方法可以解决..container{ position:relative; back ...

  9. vue页面跳转

    一.在template中的常见写法: <router-link to="/recommend"> <button class="button" ...

  10. iOS加解密最重要的干货:CCCrypt

    需要引入框架#import <CommonCrypto/CommonCryptor.h> 函数定义: CCCryptorStatus CCCrypt( CCOperation op, /* ...