链接:

https://vjudge.net/problem/LightOJ-1410

题意:

In a 2D plane N persons are standing and each of them has a gun in his hand. The plane is so big that the persons can be considered as points and their locations are given as Cartesian coordinates. Each of the N persons fire the gun in his hand exactly once and no two of them fire at the same or similar time (the sound of two gun shots are never heard at the same time by anyone so no sound is missed due to concurrency). The hearing ability of all these persons is exactly same. That means if one person can hear a sound at distance R1, so can every other person and if one person cannot hear a sound at distance R2 the other N-1 persons cannot hear a sound at distance R2 as well.

The N persons are numbered from 1 to N. After all the guns are fired, all of them are asked how many gun shots they have heard (not including their own shot) and they give their verdict. It is not possible for you to determine whether their verdicts are true but it is possible for you to judge if their verdicts are consistent. For example, look at the figure above. There are five persons and their coordinates are (1, 2), (3, 1), (5, 1), (6, 3) and (1, 5) and they are numbered as 1, 2, 3, 4 and 5 respectively. After all five of them have shot their guns, you ask them how many shots each of them have heard. Now if there response is 1, 1, 1, 2 and 1 respectively then you can represent it as (1, 1, 1, 2, 1). But this is an inconsistent verdict because if person 4 hears 2 shots then he must have heard the shot fired by person 2, then obviously person 2 must have heard the shot fired by person 1, 3 and 4 (person 1 and 3 are nearer to person 2 than person 4). But their opinions show that Person 2 says that he has heard only 1 shot. On the other hand (1, 2, 2, 1, 0) is a consistent verdict for this scenario so is (2, 2, 2, 1, 1). In this scenario (5, 5, 5, 4, 4) is not a consistent verdict because a person can hear at most 4 shots.

Given the locations of N persons, your job is to find the total number of different consistent verdicts for that scenario. Two verdicts are different if opinion of at least one person is different.

思路:

计算任意两点距离,不同种类数就是距离数

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<math.h>
#include<vector>
#include<map> using namespace std;
typedef long long LL;
const int INF = 1e9; const int MAXN = 710;
const int MOD = 1e9+7; int x[MAXN], y[MAXN];
int n;
int len[MAXN*MAXN]; int GetLen(int i, int j)
{
return (x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
} int main()
{
int t, cnt = 0;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cnt);
scanf("%d", &n);
for (int i = 1;i <= n;i++)
scanf("%d%d", &x[i], &y[i]);
int pos = 0;
for (int i = 1;i <= n;i++)
{
for (int j = i+1;j <= n;j++)
len[++pos] = GetLen(i, j);
}
sort(len+1, len+1+pos);
int res = unique(len+1, len+1+pos)-(len+1);
printf(" %d\n", res+1);
} return 0;
}

LightOJ - 1410 - Consistent Verdicts(规律)的更多相关文章

  1. 1410 - Consistent Verdicts(规律)

    1410 - Consistent Verdicts   PDF (English) Statistics Forum Time Limit: 5 second(s) Memory Limit: 32 ...

  2. LightOJ 1410 Consistent Verdicts(找规律)

    题目链接:https://vjudge.net/contest/28079#problem/Q 题目大意:题目描述很长很吓人,大概的意思就是有n个坐标代表n个人的位置,每个人听力都是一样的,每人发出一 ...

  3. Fibsieve`s Fantabulous Birthday LightOJ - 1008(找规律。。)

    Description 某只同学在生日宴上得到了一个N×N玻璃棋盘,每个单元格都有灯.每一秒钟棋盘会有一个单元格被点亮然后熄灭.棋盘中的单元格将以图中所示的顺序点亮.每个单元格上标记的是它在第几秒被点 ...

  4. Harmonic Number (II) LightOJ - 1245 (找规律?。。。)

    题意: 求前n项的n/i  的和 只取整数部分 暴力肯定超时...然后 ...现在的人真聪明...我真蠢 觉得还是别人的题意比较清晰 比如n=100的话,i=4时n/i等于25,i=5时n/i等于20 ...

  5. Trailing Zeroes (III) LightOJ - 1138 不找规律-理智推断-二分

    其实有几个尾零代表10的几次方但是10=2*510^n=2^n*5^n2增长的远比5快,所以只用考虑N!中有几个5就行了 代码看别人的: https://blog.csdn.net/qq_422797 ...

  6. Trailing Zeroes (III) LightOJ - 1138 二分+找规律

    Time Limit: 2 second(s) Memory Limit: 32 MB You task is to find minimal natural number N, so that N! ...

  7. lightoj--1410--Consistent Verdicts(技巧)

    Consistent Verdicts Time Limit: 5000MS   Memory Limit: 32768KB   64bit IO Format: %lld & %llu Su ...

  8. 初次使用SQL调优建议工具--SQL Tuning Advisor

    在10g中,Oracle推出了自己的SQL优化辅助工具: SQL优化器(SQL Tuning Advisor :STA),它是新的DBMS_SQLTUNE包. 使用STA一定要保证优化器是CBO模式下 ...

  9. LightOj 1245 --- Harmonic Number (II)找规律

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1245 题意就是求 n/i (1<=i<=n) 的取整的和这就是到找规律的题 ...

随机推荐

  1. Linux中buff/cache内存占用过高解决办法

    在Linux系统中,我们经常用free命令来查看系统内存的使用状态.在一个centos7的系统上,free命令的显示内容大概是这样一个状态: 这个命令几乎是每一个使用过Linux的人必会的命令,但越是 ...

  2. laravel中一些非常常用的php artisan命令

    php artisan 命令在开发laravel项目中非常常用,下面是一些总结 composer config -g repo.packagist composer https://mirrors.a ...

  3. Weave跨主机实现docker互通,固定ip及dns使用介绍

    一.weave介绍Weave是由weaveworks公司开发的解决Docker跨主机网络的解决方案,现在就采用它来实现Docker多宿主机互联的目的,它能够创建一个虚拟网络,用于连接部署在多台主机上的 ...

  4. kubernetes 实践五:Service详解

    Service 是 k8s 的核心概念,通过创建Service,可以为一组具有相同功能的容器应用提供一个统一的入口地址,并且将请求负载分发到后端的各个容器应用上. Service 的定义 Servic ...

  5. Huawei重新开启隐藏桌面功能

    在HUAWEI的EMUI系统7.0的时候我们都能发现桌面上靠手指操作的隐藏桌面的功能,像这样: 但是在之后的EMUI8.0.9.0,之后就没有办法用了.后来问了官方,这个功能确实是被去掉了.个人也很不 ...

  6. Tkinter & mysql 的登录框练习

    import tkinter as tk from tkinter import messagebox import pymysql class SignIn(object): def __init_ ...

  7. Qt 中的二进制兼容策略(简而言之就是地址不能变,剩下的就是让地址不变的技巧)

    本文翻译自 Policies/Binary Compatibility Issues With C++ 二进制兼容的定义 如果程序从一个以前版本的库动态链接到新版本的库之后,能够继续正常运行,而不需要 ...

  8. Codechef TSUM2 Sum on Tree 点分治、李超线段树

    传送门 点分治模板题都不会迟早要完 发现这道题需要统计所有路径的信息,考虑点分治统计路径信息. 点分治之后,因为路径是有向的,所以对于每一条路径都有向上和向下的两种.那么如果一条向上的路径,点数为\( ...

  9. Sql CLR创建一个简单的表值函数

    1.创建面目: 2. 添加函数代码: using System; using System.Data.Sql; using Microsoft.SqlServer.Server; using Syst ...

  10. bean标签解析与注册

    protected void processBeanDefinition(Element ele, BeanDefinitionParserDelegate delegate) { BeanDefin ...