GCD

题面:

  给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.

思路:

  首先两个数gcd(x,y)=p为质数,那么令x=k1*p,y=k2*p,由于是最大公因数,所以有k1k2互质,那么根据每一个p我们可以构造出一些不同的k1k2(k1,k2<=n/p),于是求k1,k2可行组合就变成了求 1~n/p范围之内的互质组数。我们运用欧拉筛同时解决找p和互质组数的问题

  首先解决互质组数的问题。我们设f[i]为1~i中的互质二元组个数。则有递推式:

  f[i]=f[i-1]+2*φ(i)

  因为1~i-1我们已经计算过了,所以考虑当前的i与1~i之间组成的互质二元组个数。很显然的,个数为φ(i).欧拉筛求解。由于二元组无序,所以*2

  在欧拉筛的时候,可以同时求出质数p和φ(i).所以求出答案。

  注意在欧拉筛是从2开始,所以初始化f[1]=1;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<fstream>
using namespace std;
#define ll long long
ll phi[],prm[],n,cnt,f[];
bool vis[];
inline void findphi(){
phi[]=,prm[]=;
for (ll i=;i<=n;++i)
{
if (!vis[i]) { prm[++cnt]=i, phi[i]=i-; }
for (ll j=;j<=cnt && i*prm[j]<=n;++j)
{
vis[i*prm[j]]=;
if (i%prm[j]==) { phi[i*prm[j]]=phi[i]*prm[j]; break; }
if (i%prm[j]!=) phi[i*prm[j]]=phi[i]*(prm[j]-);
}
f[i]=f[i-]+*phi[i];
}
return;
}
int main(){
cin>>n;
cnt=;
f[]=;
findphi();
ll ans=;
for(int i=;i<=cnt;++i){
ans+=f[n/prm[i]];
}
cout<<ans;
}

[俺们学校的题]伪.GCD的更多相关文章

  1. Stern-Brocot Tree、伪.GCD 副本

    Stern-Brocot Tree.伪.GCD 副本 伪.GCD 问题 1:\(f(a,b,c,n) = \sum_{i=0}^{n} [\frac{ai+b}{c}]\) Case 1: \(a\g ...

  2. [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)

    题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...

  3. 【Luogu】P1072Hankson的趣味题(gcd)

    这题真TM的趣味. 可以说我的动手能力还是不行,想到了算法却写不出来.以后说自己数论会GCD的时候只好虚了…… 我们首先这么想. x与a0的最大公约数为a1,那么我们把x/=a1,a0/=a1之后,x ...

  4. CodeForces 992B Nastya Studies Informatics + Hankson的趣味题(gcd、lcm)

    http://codeforces.com/problemset/problem/992/B  题意: 给你区间[l,r]和x,y 问你区间中有多少个数对 (a,b) 使得 gcd(a,b)=x lc ...

  5. 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)

    洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...

  6. 【HDU5512】 2015沈阳赛区D题 规律题(GCD)

    第一篇博客,就从一个比较简单的题目入手吧! 题目: [HDU5512] 题意: 有n个塔,编号为1~n,  编号为a,b的塔已经维修好,此外其他的塔都需要维修.塔的维修是有顺序的,每次只能维修编号为k ...

  7. noj 2069 赵信的往事 [yy题 无限gcd]

    njczy2010 2069 Accepted 31MS   224K 1351Byte G++ 2014-11-13 13:32:56.0 坑爹的无限gcd,,,尼玛想好久,原来要x对y算一次,y再 ...

  8. 2019CCPC-江西省赛C题 HDU6569 GCD预处理+二分

    Trap Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

  9. [hackerrank]John and GCD list

    https://www.hackerrank.com/contests/w8/challenges/john-and-gcd-list 简单题,GCD和LCM. #include <vector ...

随机推荐

  1. Python 运算符 各类运算符总结

    运算符详解2.1.算术运算符2.2.比较(关系)运算符2.3.赋值运算符2.4.逻辑运算符2.5.位运算符2.6.成员运算符2.7.身份运算符三.重要运算符说明3.1.join和符号”+“区别3.2. ...

  2. const指针和指向常量的指针

    先看下面六种写法: . const int p; . const int *p; . int const* p; . int * const p; . const int * const p; . i ...

  3. Django视图扩展类

    Django视图扩展类 扩展类必须配合GenericAPIView使用扩展类内部的方法,在调用序列化器时,都是使用get_serializer 需要自定义get.post等请求方法,内部实现调用扩展类 ...

  4. Java 哈希表

    public int firstUniqChar(String s){ int[] freq=new int[26]; for(int i=0;i<s.length();i++){ freq[s ...

  5. java之struts2的配置讲解(2)

    在 java之struts框架入门教程 基础上,进行下列操作 1.结构对比 原来的项目结构图 现在的结构图 即从结构上可以看出,在HelloStruts项目中增加了config 文件夹(Source ...

  6. ADO.NET 三(Command)

    操作数据库需则要用到 Command 类中提供的属性和方法.下面来介绍一下如何使用 Command 类来操作数据表中的数据. Command 类概述 在 System.Data.SqlClient 命 ...

  7. 【转载】 C#中通过Where方法查找出所有符合条件的元素集合

    在C#的List集合对象中,FirstOrDefault方法可以用于查找List集合中符合条件的第一个元素,如果需要根据条件查找到List集合中的所有符合条件的元素对象集合,则需要使用到List集合的 ...

  8. Referer和空Referer

    参考CSDN 原文:https://blog.csdn.net/hxl188/article/details/38964743 Referer和空Referer 最近公司有个接口需要针对几个域名加白名 ...

  9. Java中map接口 遍历map

    转自:https://www.cnblogs.com/wjk921/p/4918442.html java集合框架用于存储数据,也被称为集合类 位于java.util包下 java.util包下常用接 ...

  10. Swift枚举的全用法

    鉴于昨天开会部门会议讨论的时候,发现有些朋友对枚举的用法还是存在一些疑问,所以就写下这个文章,介绍下Swift下的枚举的用法. 基本的枚举类型 来,二话不说,我们先贴一个最基本的枚举: enum Mo ...