[LeetCode] 230. Kth Smallest Element in a BST 二叉搜索树中的第K小的元素
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Example 1:
Input: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Credits:
Special thanks to @ts for adding this problem and creating all test cases.
这又是一道关于二叉搜索树 Binary Search Tree 的题, LeetCode 中关于 BST 的题有 Validate Binary Search Tree, Recover Binary Search Tree, Binary Search Tree Iterator, Unique Binary Search Trees, Unique Binary Search Trees II,Convert Sorted Array to Binary Search Tree 和 Convert Sorted List to Binary Search Tree。那么这道题给的提示是让我们用 BST 的性质来解题,最重要的性质是就是左<根<右,如果用中序遍历所有的节点就会得到一个有序数组。所以解题的关键还是中序遍历啊。关于二叉树的中序遍历可以参见我之前的博客 Binary Tree Inorder Traversal,里面有很多种方法可以用,先来看一种非递归的方法,中序遍历最先遍历到的是最小的结点,只要用一个计数器,每遍历一个结点,计数器自增1,当计数器到达k时,返回当前结点值即可,参见代码如下:
解法一:
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
int cnt = ;
stack<TreeNode*> s;
TreeNode *p = root;
while (p || !s.empty()) {
while (p) {
s.push(p);
p = p->left;
}
p = s.top(); s.pop();
++cnt;
if (cnt == k) return p->val;
p = p->right;
}
return ;
}
};
当然,此题我们也可以用递归来解,还是利用中序遍历来解,代码如下:
解法二:
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
return kthSmallestDFS(root, k);
}
int kthSmallestDFS(TreeNode* root, int &k) {
if (!root) return -;
int val = kthSmallestDFS(root->left, k);
if (k == ) return val;
if (--k == ) return root->val;
return kthSmallestDFS(root->right, k);
}
};
再来看一种分治法的思路,由于 BST 的性质,可以快速定位出第k小的元素是在左子树还是右子树,首先计算出左子树的结点个数总和 cnt,如果k小于等于左子树结点总和 cnt,说明第k小的元素在左子树中,直接对左子结点调用递归即可。如果k大于 cnt+1,说明目标值在右子树中,对右子结点调用递归函数,注意此时的k应为 k-cnt-1,应为已经减少了 cnt+1 个结点。如果k正好等于 cnt+1,说明当前结点即为所求,返回当前结点值即可,参见代码如下:
解法三:
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
int cnt = count(root->left);
if (k <= cnt) {
return kthSmallest(root->left, k);
} else if (k > cnt + ) {
return kthSmallest(root->right, k - cnt - );
}
return root->val;
}
int count(TreeNode* node) {
if (!node) return ;
return + count(node->left) + count(node->right);
}
};
这道题的 Follow up 中说假设该 BST 被修改的很频繁,而且查找第k小元素的操作也很频繁,问我们如何优化。其实最好的方法还是像上面的解法那样利用分治法来快速定位目标所在的位置,但是每个递归都遍历左子树所有结点来计算个数的操作并不高效,所以应该修改原树结点的结构,使其保存包括当前结点和其左右子树所有结点的个数,这样就可以快速得到任何左子树结点总数来快速定位目标值了。定义了新结点结构体,然后就要生成新树,还是用递归的方法生成新树,注意生成的结点的 count 值要累加其左右子结点的 count 值。然后在求第k小元素的函数中,先生成新的树,然后调用递归函数。在递归函数中,不能直接访问左子结点的 count 值,因为左子节结点不一定存在,所以要先判断,如果左子结点存在的话,那么跟上面解法的操作相同。如果不存在的话,当此时k为1的时候,直接返回当前结点值,否则就对右子结点调用递归函数,k自减1,参见代码如下:
解法四:
// Follow up
class Solution {
public:
struct MyTreeNode {
int val;
int count;
MyTreeNode *left;
MyTreeNode *right;
MyTreeNode(int x) : val(x), count(), left(NULL), right(NULL) {}
}; MyTreeNode* build(TreeNode* root) {
if (!root) return NULL;
MyTreeNode *node = new MyTreeNode(root->val);
node->left = build(root->left);
node->right = build(root->right);
if (node->left) node->count += node->left->count;
if (node->right) node->count += node->right->count;
return node;
} int kthSmallest(TreeNode* root, int k) {
MyTreeNode *node = build(root);
return helper(node, k);
} int helper(MyTreeNode* node, int k) {
if (node->left) {
int cnt = node->left->count;
if (k <= cnt) {
return helper(node->left, k);
} else if (k > cnt + ) {
return helper(node->right, k - - cnt);
}
return node->val;
} else {
if (k == ) return node->val;
return helper(node->right, k - );
}
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/230
类似题目:
Second Minimum Node In a Binary Tree
参考资料:
https://leetcode.com/problems/kth-smallest-element-in-a-bst/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 230. Kth Smallest Element in a BST 二叉搜索树中的第K小的元素的更多相关文章
- [LeetCode] Kth Smallest Element in a BST 二叉搜索树中的第K小的元素
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...
- LeetCode 230 Kth Smallest Element in a BST 二叉搜索树中的第K个元素
1.非递归解法 /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * ...
- 230 Kth Smallest Element in a BST 二叉搜索树中第K小的元素
给定一个二叉搜索树,编写一个函数kthSmallest来查找其中第k个最小的元素. 注意:你可以假设k总是有效的,1≤ k ≤二叉搜索树元素个数. 进阶:如果经常修改二叉搜索树(插入/删除操作)并且你 ...
- [leetcode] 230. Kth Smallest Element in a BST 找出二叉搜索树中的第k小的元素
题目大意 https://leetcode.com/problems/kth-smallest-element-in-a-bst/description/ 230. Kth Smallest Elem ...
- Leetcode 230. Kth Smallest Element in a BST
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...
- (medium)LeetCode 230.Kth Smallest Element in a BST
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...
- [LeetCode] 230. Kth Smallest Element in a BST 解题思路
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. Not ...
- Java for LeetCode 230 Kth Smallest Element in a BST
解题思路: 直接修改中序遍历函数即可,JAVA实现如下: int res = 0; int k = 0; public int kthSmallest(TreeNode root, int k) { ...
- LeetCode 230. Kth Smallest Element in a BST 动态演示
返回排序二叉树第K小的数 还是用先序遍历,记录index和K进行比较 class Solution { public: void helper(TreeNode* node, int& idx ...
随机推荐
- VMWare 怎样复制/copy部署好的一台虚拟机
1:修改 vi /ect/udev/rules.d/70-persisten-net.rules 2:执行命令:uuidgen eth0 3:vi /etc/sysconfig/network-scr ...
- 使用 jQuery.TypeAhead 让文本框自动完成 (三)(服务器返回 JSON 复杂对象数组)
项目地址:https://github.com/twitter/typeahead.js 直接贴代码了: @section headSection { <script type="te ...
- Neo4j 第十一篇:Cypher函数
Cypher函数是对图进行查询和操作的重要工具. 一,谓词函数 谓词函数返回true或者false,主要用于检查是否存在或满足特定的条件. 1,Exists 如果指定的模式存在于图中,或者特定的属性存 ...
- f(n-1) + f(n-2)的编译器处理
https://gcc.godbolt.org int addx(int a){ return a + 2; } int gooo(){ return addx(3) + addx(4) + ad ...
- 排障利器之远程调试与监控 --jmx & remote debug
监控和调试功能是应用必备的属性之一,其手段也是多种多样. 一般地,我们可以通过:线上日志, zabbix, grafana, cat 等待系统做一问题留底,有问题及时报警,从而达到监控效果. 而对于应 ...
- js、jquery、css属性及出错集合
*)注意使用jquery设置css的语法 css("propertyname","value");#单个时时逗号 css({"propertyname ...
- C#关键字 const与readonly
====const==== const关键字来声明某个常量字段或常量局部变量.常量字段和常量局部变量不是变量而且不能修改.常量可以为数字.布尔值.字符串或null引用. 常数声明的类型指定声明引入的成 ...
- shiro加密算法
第一节的时候我介绍过,shiro有很多加密算法,如md5和sha,而且还支持加盐,使得密码的解析变得更有难度,更好的保障了数据的安全性. 这里我们要介绍的是md5算法,因为比较常用.首先我们来看看md ...
- Windows+Qt+MinGW使用gRPC
本文参考博客文章Qt gRPC 简单应用进行了亲自尝试,特此记录以下过程,为后人提供经验.我的环境:Windows10 x64需要依赖MSYS2环境(一个类Unix环境,包管理器)MSYS2 gith ...
- 队列解密QQ号
队列解密QQ号 本篇博客主要是<啊哈!算法>的读书笔记,这里做一下记录. 问题场景: 给定一串 QQ 号,631758924,从其中解密出真实的 QQ 号. 解密规则:首先将第一个数删除, ...