题目描述

N个偶像排成一列,他们来自M个不同的乐队。每个团队至少有一个偶像。

现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起。重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的偶像一个个归队到原来的空位,归队的位置任意。

请问最少让多少偶像出列?

解析

有点难。

定义二进制状态\(i\)表示自右往左第\(j\)位二进制数为第\(j\)个团队排队状态,其中1表示排好,0反之。

我们不妨大胆假设对于状态\(i\),这些排好的团队就都站在最前面,那么没排好的团队就只能站在她们后面,我们遍历所有没排好队的团队,接在排好队的后面。仔细考察,会发现如此定义也可以遍历整个状态空间,是可行的。

设\(dp[i]\)表示状态\(i\)时,假设排好队的所有团队都站在最前面出列的最少人数。对于这个状态\(i\),它可以从所有满足一个条件的它的子集转移而来,即其子集中某个团队未排好队的状态。

首先,对于一个状态\(i\),总人数不变,那么对于排在最后的一个团队的位置我们也就知道了。

对于一个转移,要让没排好队的那一个团队的人排好队,它会造成所有不属于这个团队的人出队。

预处理出每个团队的人的前缀和进行一个小小的优化即可轻松A掉这道题。

参考代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 100010
#define MOD 2520
#define E 1e-12
using namespace std;
inline int read()
{
int f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int sum[21][N],n,m,dp[N*20];
int main()
{
n=read(),m=read();
for(int i=1;i<=n;++i){
int x=read();
for(int j=1;j<=m;++j) sum[j][i]=sum[j][i-1];
sum[x][i]++;
}
memset(dp,0x3f,sizeof(dp));
dp[0]=0;
for(int i=0;i<=(1<<m)-1;++i){
int tmp=0;
for(int j=1;j<=m;++j)
if((i>>(j-1))&1) tmp+=sum[j][n];//该团队已经排好
for(int j=1;j<=m;++j){
if((i>>(j-1))&1) continue;
int l=tmp,r=tmp+sum[j][n];//没排好的这个团队要排到的位置
dp[i|1<<(j-1)]=min(dp[i|1<<(j-1)],dp[i]+r-l-sum[j][r]+sum[j][l]);
}
}
printf("%d\n",dp[(1<<m)-1]);
return 0;
}

*P3694 邦邦的大合唱站队[dp]的更多相关文章

  1. 状压DP 【洛谷P3694】 邦邦的大合唱站队

    [洛谷P3694] 邦邦的大合唱站队 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  2. P3694 邦邦的大合唱站队/签到题(状压dp)

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  3. 洛谷P3694 邦邦的大合唱站队/签到题

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  4. P3694 邦邦的大合唱站队 (状压DP)

    题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...

  5. 洛谷P3694 邦邦的大合唱站队【状压dp】

    状压dp 应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移) 题目背景 \(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. ...

  6. Luogu P3694 邦邦的大合唱站队 【状压dp】By cellur925

    题目传送门 最开始学状压的时候...学长就讲的是这个题.当时对于刚好像明白互不侵犯和炮兵阵地的我来说好像在听天书.......因为我当时心里想,这又不是什么棋盘,咋状压啊?!后来发现这样的状压多了去了 ...

  7. 洛谷 P3694 邦邦的大合唱站队 状压DP

    题目描述 输入输出样例 输入 #1 复制 12 4 1 3 2 4 2 1 2 3 1 1 3 4 输出 #1 复制 7 说明/提示 分析 首先要注意合唱队排好队之后不一定是按\(1.2.3..... ...

  8. P3694 邦邦的大合唱站队

    题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...

  9. [luoguP3694] 邦邦的大合唱站队/签到题(状压DP)

    传送门 来自kkk的题解: 70分做法:枚举每个学校顺序,暴力. 100分:状压dp.从队列头到尾DP, 状态:f[i]表示i状态下最小的出列(不一致)的个数. 比如f[1101]表示从头到位为1/3 ...

随机推荐

  1. git本地以及远程分支回滚

    转:https://www.cnblogs.com/sunny-sl/p/11236280.html 1. git本地版本回退 Git reset --hard commit_id(可用 git lo ...

  2. Java并发编程核心概念一览

    作者博客地址 https://muggle.javaboy.org. 并行相关概念 同步和异步 同步和异步通常来形容一次方法的调用.同步方法一旦开始,调用者必须等到方法结束才能执行后续动作:异步方法则 ...

  3. Oracle中恢复drop掉的表中的数据

    今天同事不小心把生产上的一张表直接drop掉了,没有做备份,哥们慌的一匹,来找我这个小白来帮忙解决,于是心血来潮简单总结一下. 其实在oralce中,用drop删掉一张表,其实不会真正的删除,只是把表 ...

  4. Ubuntu下好用的pdf工具

    安装okular sudo apt-get install okular 汉化 sudo apt-get install kde-l10n-zhcn 然后打开PDF文件时,右键选择打开方式选择okul ...

  5. 025 SSM综合练习01--数据后台管理系统--功能介绍及数据库表

    1.功能介绍 (1)环境搭建 主要讲解maven工程搭建,以及基于oracle数据库的商品表信息,并完成SSM整合.(2)商品查询 基于SSM整合基础上完成商品查询,要掌握主面页面main.jsp及商 ...

  6. Fineui 根据datatable结构动态创建grid列,帮助类。动态绑定grid。

    public class FineuiHelper     {         /// <summary>         /// 动态创建Grid结构,在 Page_Init事件里执行( ...

  7. Django框架(十三)——Auth模块

    Auth模块 一.什么是auth模块 Auth模块是Django自带的用户认证模块 Auth模块是Django自带的用户认证模块,可以实现包括用户注册.用户登录.用户认证.注销.修改密码等功能.默认使 ...

  8. Keyboarding

    题目描述 思路 一开始想先写一个bfs,目标字符串要加上一个'*',表示这是一个换行符,然后一个字母一个字母的找,每次重置一下vis数组,bfs返回的结果再加上1,表示要打印这个字母,结果第一个样例没 ...

  9. 【转】ISE——完整工程的建立

    FPGA公司主要是两个Xilinx和Altera(现intel PSG),我们目前用的ISE是Xilinx的开发套件,现在ISE更新到14.7已经不更新了,换成了另一款开发套件Vivado,也是Xil ...

  10. CentOS7安装Grafana(Yum)

    一.概述 Grafana是一个跨平台的开源的分析和可视化工具,可以通过将采集的数据查询然后可视化的展示,并及时通知. 其特点: 丰富的可视化显示插件,包括热图.折线图.饼图,表格等等. 多数据源,支持 ...