题目描述

N个偶像排成一列,他们来自M个不同的乐队。每个团队至少有一个偶像。

现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起。重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的偶像一个个归队到原来的空位,归队的位置任意。

请问最少让多少偶像出列?

解析

有点难。

定义二进制状态\(i\)表示自右往左第\(j\)位二进制数为第\(j\)个团队排队状态,其中1表示排好,0反之。

我们不妨大胆假设对于状态\(i\),这些排好的团队就都站在最前面,那么没排好的团队就只能站在她们后面,我们遍历所有没排好队的团队,接在排好队的后面。仔细考察,会发现如此定义也可以遍历整个状态空间,是可行的。

设\(dp[i]\)表示状态\(i\)时,假设排好队的所有团队都站在最前面出列的最少人数。对于这个状态\(i\),它可以从所有满足一个条件的它的子集转移而来,即其子集中某个团队未排好队的状态。

首先,对于一个状态\(i\),总人数不变,那么对于排在最后的一个团队的位置我们也就知道了。

对于一个转移,要让没排好队的那一个团队的人排好队,它会造成所有不属于这个团队的人出队。

预处理出每个团队的人的前缀和进行一个小小的优化即可轻松A掉这道题。

参考代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 100010
#define MOD 2520
#define E 1e-12
using namespace std;
inline int read()
{
int f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int sum[21][N],n,m,dp[N*20];
int main()
{
n=read(),m=read();
for(int i=1;i<=n;++i){
int x=read();
for(int j=1;j<=m;++j) sum[j][i]=sum[j][i-1];
sum[x][i]++;
}
memset(dp,0x3f,sizeof(dp));
dp[0]=0;
for(int i=0;i<=(1<<m)-1;++i){
int tmp=0;
for(int j=1;j<=m;++j)
if((i>>(j-1))&1) tmp+=sum[j][n];//该团队已经排好
for(int j=1;j<=m;++j){
if((i>>(j-1))&1) continue;
int l=tmp,r=tmp+sum[j][n];//没排好的这个团队要排到的位置
dp[i|1<<(j-1)]=min(dp[i|1<<(j-1)],dp[i]+r-l-sum[j][r]+sum[j][l]);
}
}
printf("%d\n",dp[(1<<m)-1]);
return 0;
}

*P3694 邦邦的大合唱站队[dp]的更多相关文章

  1. 状压DP 【洛谷P3694】 邦邦的大合唱站队

    [洛谷P3694] 邦邦的大合唱站队 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  2. P3694 邦邦的大合唱站队/签到题(状压dp)

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  3. 洛谷P3694 邦邦的大合唱站队/签到题

    P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...

  4. P3694 邦邦的大合唱站队 (状压DP)

    题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...

  5. 洛谷P3694 邦邦的大合唱站队【状压dp】

    状压dp 应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移) 题目背景 \(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. ...

  6. Luogu P3694 邦邦的大合唱站队 【状压dp】By cellur925

    题目传送门 最开始学状压的时候...学长就讲的是这个题.当时对于刚好像明白互不侵犯和炮兵阵地的我来说好像在听天书.......因为我当时心里想,这又不是什么棋盘,咋状压啊?!后来发现这样的状压多了去了 ...

  7. 洛谷 P3694 邦邦的大合唱站队 状压DP

    题目描述 输入输出样例 输入 #1 复制 12 4 1 3 2 4 2 1 2 3 1 1 3 4 输出 #1 复制 7 说明/提示 分析 首先要注意合唱队排好队之后不一定是按\(1.2.3..... ...

  8. P3694 邦邦的大合唱站队

    题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...

  9. [luoguP3694] 邦邦的大合唱站队/签到题(状压DP)

    传送门 来自kkk的题解: 70分做法:枚举每个学校顺序,暴力. 100分:状压dp.从队列头到尾DP, 状态:f[i]表示i状态下最小的出列(不一致)的个数. 比如f[1101]表示从头到位为1/3 ...

随机推荐

  1. python中判断对象类型的函数——isinstance

    isinstance是Python中的一个内建函数.是用来判断一个对象的变量类型. isinstance(object, class-or-type-or-tuple) 如果参数object是clas ...

  2. django使用https

    根据以下内容总结了下: http://www.voidcn.com/article/p-xxdfvetx-da.html http://www.voidcn.com/article/p-ezmbnny ...

  3. [转帖]超能课堂(207) SD卡标准错综复杂,到底该认哪一个?

    超能课堂(207)SD卡标准错综复杂,到底该认哪一个? https://www.expreview.com/71505.html 开始的地方 SD容量等级 SD标准(SDSC) SDHC SDXC S ...

  4. Java基础知识点总结(三)

    figure:first-child { margin-top: -20px; } #write ol, #write ul { position: relative; } img { max-wid ...

  5. 长乐国庆集训Day4

    T1 一道数论神题 题目 [题目描述] LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图,只有点权. LYK想把这个图删干净,它的方法是这样的.每次选择一个点,将它删 ...

  6. jenkins+springboot+maven多模块部署

    一.jenkins的安装配置 1.去官网下载war包,这种方式比较简单方便 java -jar jenkins.war --httpPort=49001 2.首次运行有一个key放在服务器上需要你填入 ...

  7. Windows 编译安装 nginx 服务器 + rtmp 模块

    有关博客: <Windows 编译安装 nginx 服务器 + rtmp 模块>.<Ubuntu 编译安装 nginx>.<Arm-Linux 移植 Nginx> ...

  8. Spring boot java.lang.NoClassDefFoundError: org/springframework/boot/bind/RelaxedPropertyResolver

    Spring boot 2.0.3 RELEASE 配置报错 java.lang.NoClassDefFoundError: org/springframework/boot/bind/Relaxed ...

  9. MongoDB和Java(5):Spring Data整合MongoDB(注解配置)

    最近花了一些时间学习了下MongoDB数据库,感觉还是比较全面系统的,涉及了软件安装.客户端操作.安全认证.副本集和分布式集群搭建,以及使用Spring Data连接MongoDB进行数据操作,收获很 ...

  10. python 跨目录访问文件

    1.同级.同目录的文件之间的访问 有这样一个目录结构 假如,in_A.py 这个文件想调用 hello_world.py 中的函数怎么办呢? --->>>  import 只需在 i ...