*P3694 邦邦的大合唱站队[dp]
题目描述
N个偶像排成一列,他们来自M个不同的乐队。每个团队至少有一个偶像。
现在要求重新安排队列,使来自同一乐队的偶像连续的站在一起。重新安排的办法是,让若干偶像出列(剩下的偶像不动),然后让出列的偶像一个个归队到原来的空位,归队的位置任意。
请问最少让多少偶像出列?
解析
有点难。
定义二进制状态\(i\)表示自右往左第\(j\)位二进制数为第\(j\)个团队排队状态,其中1表示排好,0反之。
我们不妨大胆假设对于状态\(i\),这些排好的团队就都站在最前面,那么没排好的团队就只能站在她们后面,我们遍历所有没排好队的团队,接在排好队的后面。仔细考察,会发现如此定义也可以遍历整个状态空间,是可行的。
设\(dp[i]\)表示状态\(i\)时,假设排好队的所有团队都站在最前面出列的最少人数。对于这个状态\(i\),它可以从所有满足一个条件的它的子集转移而来,即其子集中某个团队未排好队的状态。
首先,对于一个状态\(i\),总人数不变,那么对于排在最后的一个团队的位置我们也就知道了。
对于一个转移,要让没排好队的那一个团队的人排好队,它会造成所有不属于这个团队的人出队。
预处理出每个团队的人的前缀和进行一个小小的优化即可轻松A掉这道题。
参考代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 100010
#define MOD 2520
#define E 1e-12
using namespace std;
inline int read()
{
int f=1,x=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int sum[21][N],n,m,dp[N*20];
int main()
{
n=read(),m=read();
for(int i=1;i<=n;++i){
int x=read();
for(int j=1;j<=m;++j) sum[j][i]=sum[j][i-1];
sum[x][i]++;
}
memset(dp,0x3f,sizeof(dp));
dp[0]=0;
for(int i=0;i<=(1<<m)-1;++i){
int tmp=0;
for(int j=1;j<=m;++j)
if((i>>(j-1))&1) tmp+=sum[j][n];//该团队已经排好
for(int j=1;j<=m;++j){
if((i>>(j-1))&1) continue;
int l=tmp,r=tmp+sum[j][n];//没排好的这个团队要排到的位置
dp[i|1<<(j-1)]=min(dp[i|1<<(j-1)],dp[i]+r-l-sum[j][r]+sum[j][l]);
}
}
printf("%d\n",dp[(1<<m)-1]);
return 0;
}
*P3694 邦邦的大合唱站队[dp]的更多相关文章
- 状压DP 【洛谷P3694】 邦邦的大合唱站队
[洛谷P3694] 邦邦的大合唱站队 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...
- P3694 邦邦的大合唱站队/签到题(状压dp)
P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...
- 洛谷P3694 邦邦的大合唱站队/签到题
P3694 邦邦的大合唱站队/签到题 题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶 ...
- P3694 邦邦的大合唱站队 (状压DP)
题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...
- 洛谷P3694 邦邦的大合唱站队【状压dp】
状压dp 应用思想,找准状态,多考虑状态和\(f\)答案数组的维数(这个题主要就是找出来状态如何转移) 题目背景 \(BanG Dream!\)里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. ...
- Luogu P3694 邦邦的大合唱站队 【状压dp】By cellur925
题目传送门 最开始学状压的时候...学长就讲的是这个题.当时对于刚好像明白互不侵犯和炮兵阵地的我来说好像在听天书.......因为我当时心里想,这又不是什么棋盘,咋状压啊?!后来发现这样的状压多了去了 ...
- 洛谷 P3694 邦邦的大合唱站队 状压DP
题目描述 输入输出样例 输入 #1 复制 12 4 1 3 2 4 2 1 2 3 1 1 3 4 输出 #1 复制 7 说明/提示 分析 首先要注意合唱队排好队之后不一定是按\(1.2.3..... ...
- P3694 邦邦的大合唱站队
题目背景 BanG Dream!里的所有偶像乐队要一起大合唱,不过在排队上出了一些问题. 题目描述 N个偶像排成一列,他们来自M个不同的乐队.每个团队至少有一个偶像. 现在要求重新安排队列,使来自同一 ...
- [luoguP3694] 邦邦的大合唱站队/签到题(状压DP)
传送门 来自kkk的题解: 70分做法:枚举每个学校顺序,暴力. 100分:状压dp.从队列头到尾DP, 状态:f[i]表示i状态下最小的出列(不一致)的个数. 比如f[1101]表示从头到位为1/3 ...
随机推荐
- POJ 2386 DFS深搜入门
题目链接 Time Limit: 1000MS Memory Limit: 65536K Description Due to recent rains, water has pooled in va ...
- 【bat】九九表
@echo off & setlocal EnableDelayedExpansion title 九九表 for /l %%a in (1,1,9) do ( set temp= for / ...
- nginx+upsync+consul 构建动态nginx配置系统
参考: http://www.php230.com/weixin1456193048.html [upsync模块说明.性能评测] https://www.jianshu.com/p/76352ef ...
- appium 方法整理
1.contexts contexts(self): Returns the contexts within the current session. 返回当前会话中的上下文,使用后可 ...
- Locust性能测试-参数化批量注册
前言 实现场景:所有并发虚拟用户共享同一份测试数据,并且保证虚拟用户使用的数据不重复. 例如,模拟10用户并发注册账号,总共有100个手机号,要求注册账号不重复,注册完毕后结束测试 准备数据 虚拟用户 ...
- Spring-Boot之Admin服务监控-9
一.Spring Boot Admin用于管理和监控一个或者多个Spring Boot程序.Spring Boot Admin分为Server端和Client 端,Client端可以通过向Http S ...
- 3.使用 Code First 迁移更新数据库
1.更新 SeedData 类,使它提供新列的值. 示例更改如下所示,但可能需要对每个 new Movie 块做出此更改. context.Movie.AddRange( new Movie { Ti ...
- 换个语言学一下 Golang (6)——控制流程
Go语言的控制结构关键字只有if..else if..else ,for 和 switch. 而且在Go中,为了避免格式化战争,对程序结构做了统一的强制的规定.看下下面的例子. 请比较一下A程序和B程 ...
- Mock、Powermock使用汇总
背景 工作中经常用到单测,某对单测掌握的不好,所以趁此学习.总结一下. 主要参考:https://www.jianshu.com/p/0c2480b1709e.https://www.cnblogs. ...
- js计算hashcode
String.prototype.hashCode = function(){ var hash = 0; for (var i = 0; i < this.length; i++) { var ...