线程

线程是由若干个进程组成的,所以一个进程至少包含一个线程;并且线程是操作系统直接支持的执行单元。多任务可以由多进程完成,也可由一个进程的多个线程来完成

Python的线程是真正的Posix Thread,而不是模拟出来的线程。

Python的标准库提供了两个模块:_threadthreading_thread是低级模块,threading是高级模块,对_thread进行了封装。绝大多数情况下,我们只需要使用threading这个高级模块。

  启动一个线程就是把一个函数传入并创建Thread()实例,然后调用start()启动

import os,threading

def loop():
print('进程%s的pid是:%s'%(threading.current_thread().name,os.getpid()))
print(threading.current_thread())
if __name__ == "__main__":
print('正在运行的进程是%s'%threading.current_thread().name)
print(threading.current_thread())
t=threading.Thread(target=loop,name='loopThread')
t.start()
t.join() #输出
正在运行的进程是MainThread
<_MainThread(MainThread, started 4736)>
进程loopThread的pid是:8524
<Thread(loopThread, started 17172)>

  

  由于任何进程默认就会启动一个线程,我们把该线程称为主线程,主线程又可以启动新的线程,Python的threading模块有个current_thread()函数,它永远返回当前线程的实例。主线程实例的名字叫MainThread,子线程的名字在创建时指定,我们用LoopThread命名子线程。名字仅仅在打印时用来显示,完全没有其他意义,如果不起名字Python就自动给线程命名为Thread-1Thread-2……

Lock

多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响,而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把内容给改乱了。

然后作者举了一个例子,这个例子创建了两个线程t1,t2,都对一个全局变量进行修改,作者强调,若是循环的次数足够多,就会使修改出错。接下来,作者解释了出错的原因

高级语言的一条语句在CPU执行时是若干条语句,即使一个简单的计算:

balance = balance + n

  

也分两步:

  1. 计算balance + n,存入临时变量中;
  2. 将临时变量的值赋给balance

也就是可以看成:

x = balance + n
balance = x

  由于x是局部变量,两个线程各自都有自己的x,当代码正常执行时:

初始值 balance = 0

t1: x1 = balance + 5 # x1 = 0 + 5 = 5
t1: balance = x1 # balance = 5
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1 # balance = 0 t2: x2 = balance + 8 # x2 = 0 + 8 = 8
t2: balance = x2 # balance = 8
t2: x2 = balance - 8 # x2 = 8 - 8 = 0
t2: balance = x2 # balance = 0 结果 balance = 0

  但是t1和t2是交替运行的,如果操作系统以下面的顺序执行t1、t2:

初始值 balance = 0

t1: x1 = balance + 5  # x1 = 0 + 5 = 5

t2: x2 = balance + 8  # x2 = 0 + 8 = 8
t2: balance = x2 # balance = 8 t1: balance = x1 # balance = 5#问题发生在这里
t1: x1 = balance - 5 # x1 = 5 - 5 = 0
t1: balance = x1 # balance = 0 t2: x2 = balance - 8 # x2 = 0 - 8 = -8
t2: balance = x2 # balance = -8 结果 balance = -8

  究其原因,是因为修改balance需要多条语句,而执行这几条语句时,线程可能中断,从而导致多个线程把同一个对象的内容改乱了。

  所以,我们必须确保一个线程在修改balance的时候,别的线程一定不能改。

  如果我们要确保balance计算正确,就要给change_it()上一把锁,当某个线程开始执行change_it()时,我们说,该线程因为获得了锁,因此其他线程不能同时执行change_it(),只能等待,直到锁被释放后,获得该锁以后才能改。由于锁只有一个,无论多少线程,同一时刻最多只有一个线程持有该锁,所以,不会造成修改的冲突。创建一个锁就是通过threading.Lock()来实现:

balance = 0
lock = threading.Lock() def run_thread(n):
for i in range(100000):
# 先要获取锁:
lock.acquire()
try:
# 放心地改吧:
change_it(n)
finally:
# 改完了一定要释放锁:
lock.release()

  

  当多个线程同时执行lock.acquire()时,只有一个线程能成功地获取锁,然后继续执行代码,其他线程就继续等待直到获得锁为止。

  获得锁的线程用完后一定要释放锁,否则那些苦苦等待锁的线程将永远等待下去,成为死线程。所以我们用try...finally来确保锁一定会被释放。

  锁的好处就是确保了某段关键代码只能由一个线程从头到尾完整地执行,坏处当然也很多,首先是阻止了多线程并发执行,包含锁的某段代码实际上只能以单线程模式执行,效率就大大地下降了。其次,由于可以存在多个锁,不同的线程持有不同的锁,并试图获取对方持有的锁时,可能会造成死锁,导致多个线程全部挂起,既不能执行,也无法结束,只能靠操作系统强制终止。

多核CPU

  作者举了一个例子说明了python多线程机制和c、c++、java的不同,由于python独特的GIL机制,使得python多线程只能使用一个核,而不是其他语言的多核应该可以同时执行多个线程。

  因为Python的线程虽然是真正的线程,但解释器执行代码时,有一个GIL锁:Global Interpreter Lock,任何Python线程执行前,必须先获得GIL锁,然后,每执行100条字节码,解释器就自动释放GIL锁,让别的线程有机会执行。这个GIL全局锁实际上把所有线程的执行代码都给上了锁,所以,多线程在Python中只能交替执行,即使100个线程跑在100核CPU上,也只能用到1个核。

  GIL是Python解释器设计的历史遗留问题,通常我们用的解释器是官方实现的CPython,要真正利用多核,除非重写一个不带GIL的解释器。

  所以,在Python中,可以使用多线程,但不要指望能有效利用多核。如果一定要通过多线程利用多核,那只能通过C扩展来实现,不过这样就失去了Python简单易用的特点。

  不过,也不用过于担心,Python虽然不能利用多线程实现多核任务,但可以通过多进程实现多核任务。多个Python进程有各自独立的GIL锁,互不影响。

小结

多线程编程,模型复杂,容易发生冲突,必须用锁加以隔离,同时,又要小心死锁的发生。

Python解释器由于设计时有GIL全局锁,导致了多线程无法利用多核。多线程的并发在Python中就是一个美丽的梦。

ThreadLocal

在多线程环境下,每个线程都有自己的数据。一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁。

但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦:(关注的是一个线程内不同函数调用的时候传递参数,而不是在不同的线程之间通信)

def process_student(name):
std = Student(name)
# std是局部变量,但是每个函数都要用它,因此必须传进去:
do_task_1(std)
do_task_2(std) def do_task_1(std):
do_subtask_1(std)
do_subtask_2(std) def do_task_2(std):
do_subtask_2(std)
do_subtask_2(std)

  

  每个函数一层一层调用都这么传参数那还得了?用全局变量?也不行,因为每个线程处理不同的Student对象,不能共享。

  如果用一个全局dict存放所有的Student对象,然后以thread自身作为key获得线程对应的Student对象如何?

global_dict = {}

def std_thread(name):
std = Student(name)
# 把std放到全局变量global_dict中:
global_dict[threading.current_thread()] = std
do_task_1()
do_task_2() def do_task_1():
# 不传入std,而是根据当前线程查找:
std = global_dict[threading.current_thread()]
... def do_task_2():
# 任何函数都可以查找出当前线程的std变量:
std = global_dict[threading.current_thread()]
...

  

  这种方式理论上是可行的,它最大的优点是消除了std对象在每层函数中的传递问题,但是,每个函数获取std的代码有点丑。

有没有更简单的方式?

  ThreadLocal应运而生,不用查找dictThreadLocal帮你自动做这件事:(threadLocal本质上也是一个dict),即

import threading

# 创建全局ThreadLocal对象:
local_school = threading.local() def process_student():
# 获取当前线程关联的student:
std = local_school.student
print('Hello, %s (in %s)' % (std, threading.current_thread().name)) def process_thread(name):
# 绑定ThreadLocal的student:
local_school.student = name#student就是在这里直接创建的
process_student() t1 = threading.Thread(target= process_thread, args=('Alice',), name='Thread-A')
t2 = threading.Thread(target= process_thread, args=('Bob',), name='Thread-B')
t1.start()
t2.start()
t1.join()
t2.join()
#输出
Hello, Alice (in Thread-A)
Hello, Bob (in Thread-B)

  

  全局变量local_school就是一个ThreadLocal对象,每个Thread对它都可以读写student属性,但互不影响。你可以把local_school看成全局变量,但每个属性如local_school.student都是线程的局部变量,可以任意读写而互不干扰,也不用管理锁的问题,ThreadLocal内部会处理。

  可以理解为全局变量local_school是一个dict不但可以用local_school.student,还可以绑定其他变量,如local_school.teacher等等。

  ThreadLocal最常用的地方就是为每个线程绑定一个数据库连接,HTTP请求,用户身份信息等,这样一个线程的所有调用到的处理函数都可以非常方便地访问这些资源。

小结

  一个ThreadLocal变量虽然是全局变量,但每个线程都只能读写自己线程的独立副本,互不干扰。ThreadLocal解决了参数在一个线程中各个函数之间互相传递的问题。

  

python 进程和线程-线程和线程变量ThreadLocal的更多相关文章

  1. python进程池multiprocessing.Pool和线程池multiprocessing.dummy.Pool实例

    进程池: 进程池的使用有四种方式:apply_async.apply.map_async.map.其中apply_async和map_async是异步的,也就是启动进程函数之后会继续执行后续的代码不用 ...

  2. python 进程和线程

    python中的进程.线程(threading.multiprocessing.Queue.subprocess) Python中的进程与线程 学习知识,我们不但要知其然,还是知其所以然.你做到了你就 ...

  3. Python—进程、线程、协程

    一.线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务 方法: ...

  4. Python进程、线程、协程

    进程和线程的解释 进程(process)和线程(thread)是操作系统的基本概念,计算机的核心是CPU,它承担了所有的计算任务: 单个CPU一次只能运行一个任务,代表单个CPU总是运行一个进程,其他 ...

  5. python进程、线程、协程(转载)

    python 线程与进程简介 进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资 ...

  6. Python进程和线程

    引入进程和线程的概念及区别 1.线程的基本概念 概念 线程是进程中执行运算的最小单位,是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不拥有系统资源,只拥有一点在运行中必不可少的资源,但 ...

  7. Python进程、线程、协程详解

    进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配.任务的调度. ...

  8. python——进程、线程、协程

    Python线程 Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #!/usr/bin/env pytho ...

  9. python 进程 线程

    进程 线程 操作系统 为什么要有操作系统? 操作系统:操作系统是一个用来协调,管理和控制计算机硬件和软件资源的系统程序.位于底层硬件与应用软件之间 工作方式:向下管理硬件 向上提供接口 切换 1.出现 ...

随机推荐

  1. js闭包和原型链好文

    http://www.cnblogs.com/wangfupeng1988/p/3977924.html

  2. LAMP组合

    动,静资源: 静态资源:客户端从服务器获得的资源表现形式与原文件相同 动态资源:通常是程序文件,需要在服务器执行之后,将执行的结果返回给客户端. 我们还可以这样理解静态资源:服务器端接入到客户端的请求 ...

  3. IIS网站应用偶尔出现"服务不可用"或者显示乱码字体

    IIS网站应用偶尔出现"服务不可用"或者显示乱码字体,使用以下办法可以解决. 原因:此种情况常会出现在iis是在Visual Studio或者.NET Framework之后安装发 ...

  4. TCP四次握手断开连接(十一)

    建立连接非常重要,它是数据正确传输的前提:断开连接同样重要,它让计算机释放不再使用的资源.如果连接不能正常断开,不仅会造成数据传输错误,还会导致套接字不能关闭,持续占用资源,如果并发量高,服务器压力堪 ...

  5. tuned linux 性能调优工具

    tuned 是redhat 提供的一套系统调优工具,使用简单,同时也提供了比较全的分类. 参考资料 https://github.com/redhat-performance/tuned

  6. 用NABCD法提出靠谱的项目建议

    在项目中提出靠谱的建议,一方面能提高项目成功的概率,另一方面锻炼自己能力提升自己在项目中的影响力,所以我们要尽可能抓住机会在项目中提建议.那要如何提出靠谱的建议呢?从需求出发,明确做法和好处,分析竞争 ...

  7. day 24

    I am a slow walker, but I never walk back. 我走得很慢,但是我从来不会后退.

  8. CF1217E Sum Queries? (线段树)

    完了,前几天才说 edu 的 DEF 都不会,现在打脸了吧 qwq 其实在刚说完这句话 1min 就会了 D,3min 就会了 E 发现,对于大小 \(\ge 3\) 的不平衡集合,它至少有一个大小为 ...

  9. xshell 与服务器断开连接后 服务停止500internal error

    看某教程用uwsgi +nginx运行django项目,但是xshell关掉之后服务会停止. 大佬一席话,胜趟十天坑. 把supervisor配置好之后正常运行. 如何配置?百度啊! 附录一个好的教程 ...

  10. 黑苹果MacOS安装记录

    https://blog.daliansky.net/macOS-Catalina-10.15-19A583-Release-version-with-Clover-5093-original-ima ...