Lock+Condition实现机制
前言:大部分多线程同步场景,在功能和性能层面,synchronized可以满足,少部分场景Lock可以满足,dubbo的源码也符合这个比例,需要使用到Condition的场景极少,整个dubbo源码中只在启动函数中,服务关闭这一处使用到了Lock+Condition机制。
1.Lock+Condition用法
生产者,消费者模式在面试coding中出场率很高,可以用synchronized+wait+ notify来实现,也可以使用Lock+Condition实现。直接上代码
public class LockConditionTest {
private LinkedList<String> queue=new LinkedList<String>(); private Lock lock = new ReentrantLock(); private int maxSize = 5; private Condition providerCondition = lock.newCondition(); private Condition consumerCondition = lock.newCondition(); public void provide(String value){
try {
lock.lock();
while (queue.size() == maxSize) {
providerCondition.await();
}
queue.add(value);
consumerCondition.signal();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
} public String consume(){
String result = null;
try {
lock.lock();
while (queue.size() == 0) {
consumerCondition.await();
}
result = queue.poll();
providerCondition.signal();
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
lock.unlock();
}
return result;
} public static void main(String[] args) {
LockConditionTest t = new LockConditionTest();
new Thread(new Provider(t)).start();
new Thread(new Consumer(t)).start(); } }
以两个问题驱动
1.队列满了,生产者线程怎么停下来的?队列从满又变为不满的时候,怎么重新激活。
2.队列空了,消费者线程如何停下来,又如何重新开始消费。
一步一步解答这两个问题
2.ReentrantLock
ReentrantLock初始化的时候,默认是初始化一个NonfairSync。
public ReentrantLock() {
sync = new NonfairSync();
}
核心代码在AbstractQueuedSynchronizer中,只看数据结构的话,这是一个基于Node,带头指针和尾指针的双向链表,每一个Node里面存一个线程,以及该线程的等待状态
static final class Node {
volatile int waitStatus;
volatile Node prev;
volatile Node next;
volatile Thread thread;
Node nextWaiter;
}
private transient volatile Node head;
private transient volatile Node tail;
private volatile int state;
那么,ReentrantLock在lock和unlock的时候,操作的就是这个双向链表sync queue。
先看获取锁的过程
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
1.如果这个锁没有任何线程持有,那么当前线程直接可以获得。(这是非公平锁的设计,如果是公平锁,需要检查是否有线程在排队,如果有,当前线程不能直接抢占,也要加入排队。)
2.如果这个锁被占用了,占用线程是当前线程,那么state+1,这也是可重入锁之所以可以重入的由来。
3.都不满足,暂时获取锁失败,返回false
那么如果在3这一步获取锁失败,后续如何处理呢?
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
1.addWaiter:在等待队列sync queue中添加一个节点
2.acquireQueued:节点自旋获取锁或者进入阻塞
addWaiter比较简单,即把当前等待线程加入sync queue的尾节点。
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
acquireQueued具体做了什么呢?
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
1.自旋
2.如果当前就一个线程在等待,那么尝试获取锁。(判断条件:当前节点的前驱为head,即head.next = 当前节点)
3.不满足2,如果满足进入阻塞的条件,调用LockSupport.park(this)进入阻塞。
一句话总结lock的过程:当前线程直接去尝试获取锁,不成功,则加入sync queue尾节点进行阻塞等待(非公平)。
在看unlock的过程
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
1.先释放当前线程占有的锁,核心就是维护state的值。加一次锁,state+1,释放反之。
2.unparkSuccessor :之前提到,lock的时候,会维护一个排队的双向队列sync queue,此时,会unpark唤醒其中的head.next,使其进入锁竞争状态。
注:公平锁,非公平锁加锁的过程小有区别,一个是抢占式的,一个是排队式的,释放锁的过程则是完全相同的。
3.Condition
先看类图
用过Object的wait,notify的对这些方法应该不陌生,对应这里的await和signal
先看await
public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
1.构造一个Node,形成一个单向链表condition queue,存储用于await在某一个condition上的线程。
2.释放当前Node持有的锁。这个释放过程跟之前提到的unlock过程类似。
3.LockSupport.park进行阻塞,等待signal的唤醒。
4.如果被唤醒,继续加入锁的竞争中去。
在看signal
public final void signal() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
Node first = firstWaiter;
if (first != null)
doSignal(first);
}
在某个condition进行await的时候,形成了一个单向链表condition queue。
那么在signal的时候,先对头结点firstWaiter进行唤醒。
唤醒的过程见下
final boolean transferForSignal(Node node) {
/*
* If cannot change waitStatus, the node has been cancelled.
*/
if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
return false; /*
* Splice onto queue and try to set waitStatus of predecessor to
* indicate that thread is (probably) waiting. If cancelled or
* attempt to set waitStatus fails, wake up to resync (in which
* case the waitStatus can be transiently and harmlessly wrong).
*/
Node p = enq(node);
int ws = p.waitStatus;
if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
LockSupport.unpark(node.thread);
return true;
}
1.将这个头结点,从condition queue中移到之前提到的sync queue中。
2.LockSupport.unpark唤醒这个节点中的线程,进行锁争夺。
4 总结
ReentrantLock lock依赖的是一个双向链表sync queue
condition依赖的是一个单项链表condition queue
二者的阻塞和唤醒依赖的都是LockSupport的park和unpark方法。
公平锁与非公平锁的区别就在于获取锁的方式不同,公平锁获取,当前线程必须检查sync queue里面是否已经有排队线程。而非公平锁则不用考虑这一点,当前线程可以直接去获取锁。
开篇实现生产者消费者模型的时候,有两个问题,现在有答案了
1.队列满了,生产者线程怎么停下来的?队列从满又变为不满的时候,怎么重新激活。
---通过lock机制,保证同一时刻,只有一个线程获取到锁,要么生产,要么消费,队列满了之后,生产者线程调用providerCondition.await(),进入阻塞等待状态,使得生产者线程停下来。当消费线程消费的时候,调用 providerCondition.signal(),重新激活生产者线程。
2.队列空了,消费者线程如何停下来,又如何重新开始消费。
---与第一个问题同理。
作者:北交吴志炜
链接:https://www.jianshu.com/p/b60273eb71a9
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
Lock+Condition实现机制的更多相关文章
- Lock+Condition 相对于 wait+notify 的一个优势案例分析
问题的描述 启动3个线程打印递增的数字, 线程1先打印1,2,3,4,5, 然后是线程2打印6,7,8,9,10, 然后是线程3打印11,12,13,14,15. 接着再由线程1打印16,17,18, ...
- 生产者消费者两种实现:wait/notifyAll和Lock/Condition
1.wait/notifyAll /** * 面试题:写一个固定容量同步容器,拥有put和get方法,以及getCount方法, * 能够支持2个生产者线程以及10个消费者线程的阻塞调用 * * 使用 ...
- “全栈2019”Java多线程第三十二章:显式锁Lock等待唤醒机制详解
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java多 ...
- lock+Condition
关键字 synchronized+wait/notify/notifyAll可以实现等待/通知模式,类ReentrantLock可以实现同样的功能,但需要借助Condition对象.Condition ...
- 玩转Java多线程(Lock.Condition的正确使用姿势)
转载请标明博客的地址 本人博客和github账号,如果对你有帮助请在本人github项目AioSocket上点个star,激励作者对社区贡献 个人博客:https://www.cnblogs.com/ ...
- 【java并发编程】Lock & Condition 协调同步生产消费
一.协调生产/消费的需求 本文内容主要想向大家介绍一下Lock结合Condition的使用方法,为了更好的理解Lock锁与Condition锁信号,我们来手写一个ArrayBlockingQueue. ...
- java 多线程 synchronized与lock的通信机制等问题,结合相应实例说明
1. 利用多线程实现如下需求: 写两个线程,一个线程打印1~52,另一个线程打印A~Z,打印顺序是12A34B...5152Z: 2. 使用synchronized 实现 public class T ...
- Java多线程——Lock&Condition
Lock比传统线程模型中的synchronized方式更加面向对象,与生活中的锁类似,锁本身也应该是一个对象.两个线程执行的代码片段要实现同步互斥的效果,它们必须用同一个Lock对象. package ...
- JDK1.5中LOCK,Condition的使用
import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; import java.uti ...
随机推荐
- go-torch安装和使用
go-torch安装 1.安装FlameGraph脚本 git clone https://github.com/brendangregg/FlameGraph.git cp FlameGraph/f ...
- Linux安装php-mysql提示需要:libmysqlclient.so.18()(64bit)的解决办法
Linux安装php-mysql提示需要:libmysqlclient.so.18()(64bit)的解决办法 在LNMP编译环境下安装zabbix会出现 执行:yum -y install net- ...
- 笔记6:Django基础
Django-MVT (1)查看python版本号: python -m django --version (2) 创建Django项目 django-admin startproject mysit ...
- 09-tensorflow-tf.split()
# 'value' is a tensor with shape [5, 30] # Split 'value' into 3 tensors with sizes [4, 15, 11] along ...
- poi基本使用
poi基本使用 依赖 <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi< ...
- Vue (表单、斗篷、条件、循环指令,分隔符成员、计算属性成员、属性的监听、vue组件、子组件、各个常见的钩子函数)
表单指令 <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF- ...
- odoo 新建模块命令
python odoo-bin scaffold academy myaddons 自动初始化所有的配置信息: python odoo-bin --addons=addons,"/home/ ...
- perf-tools 简单试用
per-tools 是性能优化大师brendan gregg 就有perf 以及ftrace 编写的性能优化工具集 提供了io .网络.系统调用...大部分方面的性能分析工具. 一张参考图 安装 cl ...
- 初识xls文件的读写
# 开发人员 : llm#时间ccc:import xlrdimport xlwt def read_xls(): info = xlrd.open_workbook('pytest.xls') pr ...
- Emacs奇技淫巧
奇技快捷键 C-t: 交换两个字符的位置 M-t: 交换两个字符的位置 C-x, C-t: 则是交换两行的位置 C-x, h: 全选 M-/: 匹配这个首字母的单词 M-c: 将下一个单词开头大写, ...