Hive学习笔记——metadata
Hive结构体系
https://blog.csdn.net/zhoudaxia/article/details/8855937
可以在hive的jdbc接口中使用getMetaData方法来获取hive表的相关元信息
statement = connection.createStatement();
DatabaseMetaData meta = connection.getMetaData();
参考
https://blog.csdn.net/u010368839/article/details/76358831
hive metadata源码解析可以参考
https://cloud.tencent.com/developer/article/1330250
hive thrift接口可以参考
http://www.laicar.com/book/echapter/5cb0bcfe739207662ac88ed1/links/x_Chapter_16.html/OEBPS/Text/part0024.xhtml
获得表的信息接口,指定tableNamePattern为hive表名
ResultSet tableRet = meta.getTables(null, "%", "ads_nsh_trade", new String[]{"TABLE"});
while (tableRet.next()) {
System.out.println("TABLE_CAT:" + tableRet.getString("TABLE_CAT"));
System.out.println("TABLE_SCHEM:" + tableRet.getString("TABLE_SCHEM"));
System.out.println("TABLE_NAME => " + tableRet.getString("TABLE_NAME"));
System.out.println("table_type => " + tableRet.getString("table_type"));
System.out.println("remarks => " + tableRet.getString("remarks"));
System.out.println("type_cat => " + tableRet.getString("type_cat"));
System.out.println("type_schem => " + tableRet.getString("type_schem"));
System.out.println("type_name => " + tableRet.getString("type_name"));
System.out.println("self_referencing_col_name => " + tableRet.getString("self_referencing_col_name"));
System.out.println("ref_generation => " + tableRet.getString("ref_generation"));
}
其中的参数可以是
table_cat, table_schem, table_name, table_type, remarks, type_cat, type_schem, type_name, self_referencing_col_name, ref_generation
如果填写不正确将会抛出异常
java.sql.SQLException: Could not find COLUMN_NAME in [table_cat, table_schem, table_name, table_type, remarks, type_cat, type_schem, type_name, self_referencing_col_name, ref_generation]
at org.apache.hive.jdbc.HiveBaseResultSet.findColumn(HiveBaseResultSet.java:100)
at org.apache.hive.jdbc.HiveBaseResultSet.getString(HiveBaseResultSet.java:541)
输出的结果
TABLE_CAT:
TABLE_SCHEM:tmp
TABLE_NAME => ads_nsh_trade
table_type => TABLE
remarks => ???????????
type_cat => null
type_schem => null
type_name => null
self_referencing_col_name => null
ref_generation => null TABLE_CAT:
TABLE_SCHEM:default
TABLE_NAME => ads_nsh_trade
table_type => TABLE
remarks => null
type_cat => null
type_schem => null
type_name => null
self_referencing_col_name => null
ref_generation => null
如果再指定schemaPattern为hive库名
ResultSet tableRet = meta.getTables(null, "default", "ads_nsh_trade", new String[]{"TABLE"});
while (tableRet.next()) {
System.out.println("TABLE_CAT:" + tableRet.getString("TABLE_CAT"));
System.out.println("TABLE_SCHEM:" + tableRet.getString("TABLE_SCHEM"));
System.out.println("TABLE_NAME => " + tableRet.getString("TABLE_NAME"));
System.out.println("table_type => " + tableRet.getString("table_type"));
System.out.println("remarks => " + tableRet.getString("remarks"));
System.out.println("type_cat => " + tableRet.getString("type_cat"));
System.out.println("type_schem => " + tableRet.getString("type_schem"));
System.out.println("type_name => " + tableRet.getString("type_name"));
System.out.println("self_referencing_col_name => " + tableRet.getString("self_referencing_col_name"));
System.out.println("ref_generation => " + tableRet.getString("ref_generation"));
}
输出结果
TABLE_CAT:
TABLE_SCHEM:default
TABLE_NAME => ads_nsh_trade
table_type => TABLE
remarks => null
type_cat => null
type_schem => null
type_name => null
self_referencing_col_name => null
ref_generation => null
在hive的元数据表中,表的信息主要在TBLS和TABLE_PARAMS这两张表中
参考
https://blog.csdn.net/haozhugogo/article/details/73274832
比如TBLS表

和TABLE_PARAMS表

获得表的字段信息的接口
ResultSet rs1 = meta.getColumns("default", "%", "ads_nsh_trade", "%");
while (rs1.next()) {
String tableCat = rs1.getString("table_cat");
String tableSchem = rs1.getString("table_schem");
String tableName = rs1.getString("table_name");
String columnName = rs1.getString("COLUMN_NAME");
String columnType = rs1.getString("TYPE_NAME");
String remarks = rs1.getString("REMARKS");
int datasize = rs1.getInt("COLUMN_SIZE");
int digits = rs1.getInt("DECIMAL_DIGITS");
int nullable = rs1.getInt("NULLABLE");
System.out.println(tableCat + " " + tableSchem + " " + tableName + " " + columnName + " " +
columnType + " " + datasize + " " + digits + " " + nullable + " " + remarks);
}
其中的参数可以是
table_cat, table_schem, table_name, column_name, data_type, type_name, column_size, buffer_length, decimal_digits, num_prec_radix, nullable, remarks, column_def, sql_data_type, sql_datetime_sub, char_octet_length, ordinal_position, is_nullable, scope_catalog, scope_schema, scope_table, source_data_type, is_auto_increment
输出的结果
null default ads_nsh_trade test_string STRING 2147483647 0 1 string??????
null default ads_nsh_trade test_boolean BOOLEAN 0 0 1 boolean??????
null default ads_nsh_trade test_short SMALLINT 5 0 1 short??????
null default ads_nsh_trade test_double DOUBLE 15 15 1 double??????
null default ads_nsh_trade test_byte TINYINT 3 0 1 byte??????
null default ads_nsh_trade test_list array<string> 0 0 1 list<String>????
null default ads_nsh_trade test_map map<string,int> 0 0 1 map<String,Int>????
null default ads_nsh_trade test_int INT 10 0 1 int??????
null default ads_nsh_trade test_set array<bigint> 0 0 1 set<Long>??????
null default ads_nsh_trade col_name DECIMAL 10 2 1 null
null default ads_nsh_trade col_name2 DECIMAL 10 2 1 null
null default ads_nsh_trade test_long BIGINT 19 0 1 null
null tmp ads_nsh_trade test_boolean BOOLEAN 0 0 1 boolean??????
null tmp ads_nsh_trade test_short SMALLINT 5 0 1 short??????
null tmp ads_nsh_trade test_double DOUBLE 15 15 1 double??????
null tmp ads_nsh_trade test_byte TINYINT 3 0 1 byte??????
null tmp ads_nsh_trade test_list array<string> 0 0 1 list<String>????
null tmp ads_nsh_trade test_map map<string,int> 0 0 1 map<String,Int>????
null tmp ads_nsh_trade test_int INT 10 0 1 int??????
null tmp ads_nsh_trade test_set array<bigint> 0 0 1 set<Long>??????
null tmp ads_nsh_trade test_long BIGINT 19 0 1 null
null tmp ads_nsh_trade test_string STRING 2147483647 0 1 null
Hive学习笔记——metadata的更多相关文章
- hive学习笔记之十:用户自定义聚合函数(UDAF)
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是<hive学习笔记>的第十 ...
- hive学习笔记之十一:UDTF
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- hive学习笔记之一:基本数据类型
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- hive学习笔记之三:内部表和外部表
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- hive学习笔记之四:分区表
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- hive学习笔记之五:分桶
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- hive学习笔记之六:HiveQL基础
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- hive学习笔记之七:内置函数
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- hive学习笔记之九:基础UDF
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
随机推荐
- Android研发技术的进阶之路
前言 移动研发火热不停,越来越多人开始学习android开发.但很多人感觉入门容易成长很难,对未来比较迷茫,不知道自己技能该怎么提升,到达下一阶段需要补充哪些内容.市面上也多是谈论知识图谱,缺少体系和 ...
- 洛谷P3810 陌上花开(CDQ分治)
洛谷P3810 陌上花开 传送门 题解: CDQ分治模板题. 一维排序,二维归并,三维树状数组. 核心思想是分治,即计算左边区间对右边区间的影响. 代码如下: #include <bits/st ...
- Docker 中 MySQL 数据的导入导出
Creating database dumps Most of the normal tools will work, although their usage might be a little c ...
- runloop事件、UI更新、observer与coranimation
一.触摸事件派发与视图绘制打包 __CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION__ __dispatchPreprocessedEve ...
- Async/await promise实现
An async function can contain an await expression that pauses the execution of the async function an ...
- 使用grok exporter 做为log 与prometheus 的桥
grok 是一个工具,可以用来解析非结构化的日志文件,可以使其结构化,同时方便查询,grok 被logstash 大量依赖 同时社区也提供了一个prometheus 的exporter 可以方便的进行 ...
- win10系统2分钟睡眠
https://blog.csdn.net/widenstage/article/details/78982722 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSe ...
- 前端微服务初试(singleSpa)
1.基本概念 实现一套微前端架构,可以把其分成四部分(参考:https://alili.tech/archive/11052bf4/) 加载器:也就是微前端架构的核心,主要用来调度子应用,决定何时展示 ...
- MySQL避免插入重复记录:唯一性约束
mysql在存在主键冲突或者唯一键冲突的情况下,根据插入策略不同,一般有以下三种避免方法.1.insert ignore2.replace into3.insert on duplicate ke ...
- python: isdigit int float 使用
>>> num1 = '2.0' >>> print num1.isdigit() False >>> num2 = ' >>> ...