USACO Stamps
洛谷 P2725 邮票 Stamps
https://www.luogu.org/problem/P2725
JDOJ 1797: Stamps 邮票
https://neooj.com:8082/oldoj/problem.php?id=1797
Description
已知一个 N 枚邮票的面值集合(如,{1 分,3 分})和一个上限 K —— 表示信封上能够贴 K 张邮票.计算从 1 到 M 的最大连续可贴出的邮资.
例如,假设有 1 分和 3 分的邮票;你最多可以贴 5 张邮票.很容易贴出 1 到 5 分的邮资(用 1分邮票贴就行了),接下来的邮资也不难:
6 = 3 + 3
7 = 3 + 3 + 1
8 = 3 + 3 + 1 + 1
9 = 3 + 3 + 3
10 = 3 + 3 + 3 + 1
11 = 3 + 3 + 3 + 1 + 1
12 = 3 + 3 + 3 + 3
13 = 3 + 3 + 3 + 3 + 1.
然而,使用 5 枚 1 分或者 3 分的邮票根本不可能贴出 14 分的邮资.因此,对于这两种邮票的集合和上限 K=5,答案是 M=13.
Input
第 1 行: 两个整数,K 和 N.K(1 <= K <= 200)是可用的邮票总数.N(1 <= N <= 50)是邮票面值的数量.
第 2 行 .. 文件末: N 个整数,每行 15 个,列出所有的 N 个邮票的面值,面值不超过 10000.
Output
第 1 行: 一个整数,从 1 分开始连续的可用集合中不多于 K 张邮票贴出的邮资数.
Sample Input
1 3
Sample Output
#include<cstdio>
#include<algorithm>
using namespace std;
int k,n;
int dp[];//dp[i]表示面值为i的时候最少需要的邮票数
int main()
{
scanf("%d%d",&k,&n);
for(int i=;i<=;i++)
dp[i]=;
dp[]=;
for(int i=;i<=n;i++)
{
int a;
scanf("%d",&a);
for(int j=a;j<=;j++)
if(dp[j-a]+<=k)
dp[j]=min(dp[j],dp[j-a]+);
}
for(int i=;i<=;i++)
if(dp[i]==)
{
printf("%d",i-);
return ;
}
}
JDOJ
#include<iostream>
#include<algorithm>
#include<cstring>
#define maxv 2000005
#define inf 0x3f3f3f3f
using namespace std;
int n,k,ans,mx,c[];
int dp[maxv];
int main()
{
cin>>k>>n;
memset(dp,inf,sizeof(dp));
dp[]=;
for(int i=;i<=n;i++)
cin>>c[i];
sort(c+,c+n+);
for(int i=;i<=n;i++)
{
mx=c[i]*k;
for(int j=c[i];j<=mx;j++)
if(dp[j-c[i]]<min(k,dp[j]-))
dp[j]=dp[j-c[i]]+;
}
for(int i=;i<maxv;i++)
{
if(dp[i]!=inf)
ans++;
else
break;
}
cout<<ans;
return ;
}
USACO Stamps的更多相关文章
- 【USACO 3.1】Stamps (完全背包)
题意:给你n种价值不同的邮票,最大的不超过10000元,一次最多贴k张,求1到多少都能被表示出来?n≤50,k≤200. 题解:dp[i]表示i元最少可以用几张邮票表示,那么对于价值a的邮票,可以推出 ...
- USACO Section 3.1: Stamps
这题一开始用了dfs(注释部分),结果TLE,后来想了DP方法,f[i] = f[j] + f[i-j], j = 1, 2... i/2, 还是TLE,网上搜了别人的代码,发现自己的状态方程有问题, ...
- USACO 邮票 Stamps
f[x]表示组成 x 最少需要的邮票数量 一一举例 最多贴5张邮票,有三种邮票可用,分别是1分,3分,8分 组成0分需要0张邮票 ——f[0]=0 组成1分需要在0分的基础上加上一张1分邮票 ——f[ ...
- 背包九讲 附:USACO中的背包问题
附:USACO中的背包问题 USACO是USA Computing Olympiad的简称,它组织了很多面向全球的计算机竞赛活动. USACO Trainng是一个很适合初学者的题库,我认为它的特色是 ...
- 洛谷P2725 邮票 Stamps
P2725 邮票 Stamps 37通过 224提交 题目提供者该用户不存在 标签USACO 难度普及/提高- 提交 讨论 题解 最新讨论 为什么RE?在codevs上AC的. 题目背景 给一组 ...
- 学校作业-Usaco DP水题
好吧,因为USACO挂掉了,所以我写的所有代码都不保证正确性[好的,这么简单的题,再不写对,你就可以滚粗了! 第一题是USACO 2.2.2 ★Subset Sums 集合 对于从 1 到 N 的连 ...
- USACO . Your Ride Is Here
Your Ride Is Here It is a well-known fact that behind every good comet is a UFO. These UFOs often co ...
- USACO翻译:USACO 2013 NOV Silver三题
USACO 2013 NOV SILVER 一.题目概览 中文题目名称 未有的奶牛 拥挤的奶牛 弹簧牛 英文题目名称 nocow crowded pogocow 可执行文件名 nocow crowde ...
- USACO翻译:USACO 2013 DEC Silver三题
USACO 2013 DEC SILVER 一.题目概览 中文题目名称 挤奶调度 农场航线 贝西洗牌 英文题目名称 msched vacation shuffle 可执行文件名 msched vaca ...
随机推荐
- Paper | Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising
目录 故事背景 网络结构 BN和残差学习 拓展到其他任务 发表在2017 TIP. 摘要 Discriminative model learning for image denoising has b ...
- FineUIPro v6.0.1 小版本更新!
这次修正了 v6.0.0版本的几个问题,建议所有用户升级到此版本: +修正调用F.addMainTab时可能出现JS错误的问题(34484135,1450561644). -仅在未调用F.ini ...
- Algorithm: CRT、EX-CRT & Lucas、Ex-Lucas
中国剩余定理 中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式. \[ \begin{aligne ...
- IDEA帮助文档快捷键ctrl+q 查看类 方法 变量 帮助文档 注释 快捷键
IDEA查看类 成员变量 局部变量注释快捷键,Ctrl +Q 查看帮助文档 实际项目中,通常一个类中的代码都不少,而且有很多的变量 那么如何快速知道这个变量的一些信息,比如类型,定义? 比如在第50 ...
- 基于opencv 识别、定位二维码 (c++版)
前言 因工作需要,需要定位图片中的二维码:我遂查阅了相关资料,也学习了opencv开源库.通过一番努力,终于很好的实现了二维码定位.本文将讲解如何使用opencv定位二维码. 定位二维码不仅仅是为了识 ...
- Python教程 | Requests的基本用法
下面我就给大家整理了Requests库的使用方法和细节. 什么是Requests Requests是Python语言编写,基于urllib3,采用Apache2 Licensed开源协议的HTTP库. ...
- Comet OJ-2019国庆欢乐赛
国庆玩的有点嗨,开学了补题. A轰炸平面镇魂曲 题目描述 虹村万泰是一位二维世界的替身使者,他的替身 "轰炸平面镇魂曲" 能产生一条直线分割整个平面. 一开始,平面上有一个矩形,其 ...
- Java性能 -- CAS乐观锁
synchronized / Lock / CAS synchronized和Lock实现的同步锁机制,都属于悲观锁,而CAS属于乐观锁 悲观锁在高并发的场景下,激烈的锁竞争会造成线程阻塞,而大量阻塞 ...
- MQ 分布式事务 -- 微服务应用
1.背景 友情链接:https://www.cnblogs.com/Agui520/p/11187972.html https://blog.csdn.net/fd2025/article/detai ...
- SpringBoot+vue整合websocket
0.引言 这里我先说下,网上对于websocket的解释有一堆不懂自己查,我这就不做原理解释,只上代码. 1.SpringBoot引入websocket maven 依赖 <dependency ...