(转)AutoML 与轻量模型大列表: awesome-AutoML-and-Lightweight-Models
Awesome-AutoML-and-Lightweight-Models
原文:http://bbs.cvmart.net/articles/414/zi-yuan-automl-yu-qing-liang-mo-xing-da-lie-biao
A list of high-quality (newest) AutoML works and lightweight models including 1.) Neural Architecture Search, 2.) Lightweight Structures, 3.) Model Compression & Acceleration, 4.) Hyperparameter Optimization, 5.) Automated Feature Engineering.
This repo is aimed to provide the info for AutoML research (especially for the lightweight models). Welcome to PR the works (papers, repositories) that are missed by the repo.
1.) Neural Architecture Search
[Papers]
Gradient:
Searching for A Robust Neural Architecture in Four GPU Hours | [CVPR 2019]
- D-X-Y/GDAS | [Pytorch]
ASAP: Architecture Search, Anneal and Prune | [2019/04]
Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours | [2019/04]
- dstamoulis/single-path-nas | [Tensorflow]
Automatic Convolutional Neural Architecture Search for Image Classification Under Different Scenes | [IEEE Access 2019]
sharpDARTS: Faster and More Accurate Differentiable Architecture Search | [2019/03]
Learning Implicitly Recurrent CNNs Through Parameter Sharing | [ICLR 2019]
- lolemacs/soft-sharing | [Pytorch]
Probabilistic Neural Architecture Search | [2019/02]
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation | [2019/01]
SNAS: Stochastic Neural Architecture Search | [ICLR 2019]
FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search | [2018/12]
Neural Architecture Optimization | [NIPS 2018]
- renqianluo/NAO | [Tensorflow]
DARTS: Differentiable Architecture Search | [2018/06]
- quark0/darts | [Pytorch]
- khanrc/pt.darts | [Pytorch]
- dragen1860/DARTS-PyTorch | [Pytorch]
Reinforcement Learning:
Template-Based Automatic Search of Compact Semantic Segmentation Architectures | [2019/04]
Understanding Neural Architecture Search Techniques | [2019/03]
Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search | [2019/01]
- falsr/FALSR | [Tensorflow]
Multi-Objective Reinforced Evolution in Mobile Neural Architecture Search | [2019/01]
- moremnas/MoreMNAS | [Tensorflow]
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware | [ICLR 2019]
- MIT-HAN-LAB/ProxylessNAS | [Pytorch, Tensorflow]
Transfer Learning with Neural AutoML | [NIPS 2018]
Learning Transferable Architectures for Scalable Image Recognition | [2018/07]
- wandering007/nasnet-pytorch | [Pytorch]
- tensorflow/models/research/slim/nets/nasnet | [Tensorflow]
MnasNet: Platform-Aware Neural Architecture Search for Mobile | [2018/07]
- AnjieZheng/MnasNet-PyTorch | [Pytorch]
Practical Block-wise Neural Network Architecture Generation | [CVPR 2018]
Efficient Neural Architecture Search via Parameter Sharing | [ICML 2018]
- melodyguan/enas | [Tensorflow]
- carpedm20/ENAS-pytorch | [Pytorch]
Efficient Architecture Search by Network Transformation | [AAAI 2018]
Evolutionary Algorithm:
Single Path One-Shot Neural Architecture Search with Uniform Sampling | [2019/04]
DetNAS: Neural Architecture Search on Object Detection | [2019/03]
The Evolved Transformer | [2019/01]
Designing neural networks through neuroevolution | [Nature Machine Intelligence 2019]
EAT-NAS: Elastic Architecture Transfer for Accelerating Large-scale Neural Architecture Search | [2019/01]
Efficient Multi-objective Neural Architecture Search via Lamarckian Evolution | [ICLR 2019]
SMBO:
MFAS: Multimodal Fusion Architecture Search | [CVPR 2019]
DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures | [ECCV 2018]
Progressive Neural Architecture Search | [ECCV 2018]
- titu1994/progressive-neural-architecture-search | [Keras, Tensorflow]
- chenxi116/PNASNet.pytorch | [Pytorch]
Random Search:
Exploring Randomly Wired Neural Networks for Image Recognition | [2019/04]
Searching for Efficient Multi-Scale Architectures for Dense Image Prediction | [NIPS 2018]
Hypernetwork:
- Graph HyperNetworks for Neural Architecture Search | [ICLR 2019]
Bayesian Optimization:
Partial Order Pruning
- Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search | [CVPR 2019]
- lixincn2015/Partial-Order-Pruning | [Caffe]
Knowledge Distillation
[Projects]
- Microsoft/nni | [Python]
2.) Lightweight Structures
[Papers]
Backbone:
- Searching for MobileNetV3 | [2019/05]
- kuan-wang/pytorch-mobilenet-v3 | [Pytorch]
- leaderj1001/MobileNetV3-Pytorch | [Pytorch]
Segmentation:
CGNet: A Light-weight Context Guided Network for Semantic Segmentation | [2019/04]
- wutianyiRosun/CGNet | [Pytorch]
ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network | [2018/11]
- sacmehta/ESPNetv2 | [Pytorch]
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation | [ECCV 2018]
- sacmehta/ESPNet | [Pytorch]
BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation | [ECCV 2018]
- ooooverflow/BiSeNet | [Pytorch]
- ycszen/TorchSeg | [Pytorch]
ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation | [T-ITS 2017]
- Eromera/erfnet_pytorch | [Pytorch]
Object Detection:
ThunderNet: Towards Real-time Generic Object Detection | [2019/03]
Pooling Pyramid Network for Object Detection | [2018/09]
- tensorflow/models | [Tensorflow]
Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages | [BMVC 2018]
- lyxok1/Tiny-DSOD | [Caffe]
Pelee: A Real-Time Object Detection System on Mobile Devices | [NeurIPS 2018]
- Robert-JunWang/Pelee | [Caffe]
- Robert-JunWang/PeleeNet | [Pytorch]
Receptive Field Block Net for Accurate and Fast Object Detection | [ECCV 2018]
- ruinmessi/RFBNet | [Pytorch]
- ShuangXieIrene/ssds.pytorch | [Pytorch]
- lzx1413/PytorchSSD | [Pytorch]
FSSD: Feature Fusion Single Shot Multibox Detector | [2017/12]
- ShuangXieIrene/ssds.pytorch | [Pytorch]
- lzx1413/PytorchSSD | [Pytorch]
- dlyldxwl/fssd.pytorch | [Pytorch]
Feature Pyramid Networks for Object Detection | [CVPR 2017]
- tensorflow/models | [Tensorflow]
3.) Model Compression & Acceleration
[Papers]
Compression:
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks | [ICLR 2019]
- google-research/lottery-ticket-hypothesis | [Tensorflow]
Rethinking the Value of Network Pruning | [ICLR 2019]
Slimmable Neural Networks | [ICLR 2019]
- JiahuiYu/slimmable_networks | [Pytorch]
AMC: AutoML for Model Compression and Acceleration on Mobile Devices | [ECCV 2018]
Learning Efficient Convolutional Networks through Network Slimming | [ICCV 2017]
- foolwood/pytorch-slimming | [Pytorch]
Channel Pruning for Accelerating Very Deep Neural Networks | [ICCV 2017]
- yihui-he/channel-pruning | [Caffe]
Pruning Convolutional Neural Networks for Resource Efficient Inference | [ICLR 2017]
- jacobgil/pytorch-pruning | [Pytorch]
Pruning Filters for Efficient ConvNets | [ICLR 2017]
Acceleration:
- Fast Algorithms for Convolutional Neural Networks | [CVPR 2016]
- andravin/wincnn | [Python]
[Projects]
- NervanaSystems/distiller | [Pytorch]
- Tencent/PocketFlow | [Tensorflow]
[Tutorials/Blogs]
4.) Hyperparameter Optimization
[Papers]
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly | [2019/03]
Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features | [NeurIPS 2018]
Google vizier: A service for black-box optimization | [SIGKDD 2017]
[Projects]
- BoTorch | [PyTorch]
- Ax (Adaptive Experimentation Platform) | [PyTorch]
- Microsoft/nni | [Python]
- dragonfly/dragonfly | [Python]
[Tutorials/Blogs]
Hyperparameter tuning in Cloud Machine Learning Engine using Bayesian Optimization
-
- krasserm/bayesian-machine-learning | [Python]
5.) Automated Feature Engineering
Model Analyzer
Netscope CNN Analyzer | [Caffe]
sksq96/pytorch-summary | [Pytorch]
Lyken17/pytorch-OpCounter | [Pytorch]
sovrasov/flops-counter.pytorch | [Pytorch]
References
- LITERATURE ON NEURAL ARCHITECTURE SEARCH
- handong1587/handong1587.github.io
- hibayesian/awesome-automl-papers
- mrgloom/awesome-semantic-segmentation
- amusi/awesome-object-detection
(转)AutoML 与轻量模型大列表: awesome-AutoML-and-Lightweight-Models的更多相关文章
- (转载) AutoML 与轻量模型大列表
作者:guan-yuan 项目地址:awesome-AutoML-and-Lightweight-Models 博客地址:http://www.lib4dev.in/info/guan-yuan/aw ...
- 轻量化模型之MobileNet系列
自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 ...
- Raspkate - 基于.NET的可运行于树莓派的轻量型Web服务器
最近在业余时间玩玩树莓派,刚开始的时候在树莓派里写一些基于wiringPi库的C语言程序来控制树莓派的GPIO引脚,从而控制LED发光二极管的闪烁,后来觉得,是不是可以使用HTML5+jQuery等流 ...
- 编写轻量ajax组件01-对比webform平台上的各种实现方式
前言 Asp.net WebForm 和 Asp.net MVC(简称MVC) 都是基于Asp.net的web开发框架,两者有很大的区别,其中一个就是MVC更加注重http本质,而WebForm试图屏 ...
- 基于netty轻量的高性能分布式RPC服务框架forest<上篇>
工作几年,用过不不少RPC框架,也算是读过一些RPC源码.之前也撸过几次RPC框架,但是不断的被自己否定,最近终于又撸了一个,希望能够不断迭代出自己喜欢的样子. 顺便也记录一下撸RPC的过程,一来作为 ...
- SqlSugar轻量ORM
蓝灯软件数据股份有限公司项目,代码开源. SqlSugar是一款轻量级的MSSQL ORM ,除了具有媲美ADO的性能外还具有和EF相似简单易用的语法. 学习列表 0.功能更新 1.SqlSuga ...
- win10 uwp MVVM 轻量框架
如果在开发过程,遇到多个页面之间,需要传输信息,那么可能遇到设计的问题.如果因为一个页面内包含多个子页面和多个子页面之间的通信问题找不到一个好的解决方法,那么请看本文.如果因为ViewModel代码越 ...
- Web Scraper——轻量数据爬取利器
日常学习工作中,我们多多少少都会遇到一些数据爬取的需求,比如说写论文时要收集相关课题下的论文列表,运营活动时收集用户评价,竞品分析时收集友商数据. 当我们着手准备收集数据时,面对低效的复制黏贴工作,一 ...
- CNN结构演变总结(二)轻量化模型
CNN结构演变总结(一)经典模型 导言: 上一篇介绍了经典模型中的结构演变,介绍了设计原理,作用,效果等.在本文,将对轻量化模型进行总结分析. 轻量化模型主要围绕减少计算量,减少参数,降低实际运行时间 ...
随机推荐
- MySQL连接查询流程源码
http://blog.itpub.net/29510932/viewspace-2129300/ 初始化: 点击(此处)折叠或打开 main |-mysqld |-my_init // 初始话线程变 ...
- nginx的压缩、https加密实现、rewrite、常见盗链配置
Nginx 压缩功能 ngx_http_gzip_module #ngx_http_gzip_module 用gzip方法压缩响应数据,节约带宽 #启用或禁用gzip压缩,默认关闭 gzip on | ...
- bash 实用技巧
一..将文件的内容赋给一个变量: file=$(cat filelist) file=$(< file) NOTE:后者性能比前者好 二..bash 分组匹配: HOSTNAME='mysql- ...
- 2013.4.24 - KDD第六天
今天早上,中秋给我发了一个压缩包,里面有战德臣的课件,昨天我说我SQL没学好,他说给我发战徳臣课件,然后说我SQL不会的话可以看这个,还有两篇文 章<LDA数学八卦>以及<A Not ...
- 使用LM386制作Arduino音乐播放器
在我们的项目中添加声音或音乐总是会使其看起来更酷一些,听上去更有吸引力.特别是如果您使用的是Arduino开发板,并且有很多空余的引脚,只需要添加一个SD卡模块和一个普通的扬声器即可轻松添加音效.在本 ...
- PAT_A1059
这是一道素数因子分解的问题: 1.先打印素数表出来,以便后期使用,素数表的大小就是10^5级别就可以,因为输入的数是long int(即就是int而已),大小最大21亿(10^10量级的),我们这里素 ...
- k8s安装之kube-state-metrics.yaml
概述 已经有了cadvisor.heapster.metric-server,几乎容器运行的所有指标都能拿到,但是下面这种情况却无能为力: 我调度了多少个replicas?现在可用的有几个? 多少个P ...
- 《hello-world》第九次团队作业:【Beta】Scrum meeting 1
项目 内容 这个作业属于哪个课程 2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 实验十三 团队作业9:Beta冲刺与团队项目验收 团队名称 <hello--wor ...
- test20190815 NOIP2019 模拟题
100+60+40=200,被后面两个题卡着我很不爽. 立方数 [问题描述] 作为 XX 战队的狂热粉丝,MdZzZZ 看到了自己心仪的队伍在半决赛落败,顿时 心灰意冷.看着自己手中的从黄牛那里抢来的 ...
- go实现文件的上传
上传端 send.go package main import ( "fmt" "io" "net" "os") fun ...