Description

题库链接

给你 \(k\) 个盒子,第 \(i\) 个盒子中有 \(n_i\) 个数,第 \(j\) 个数为 \(x_{i,j}\)。现在让你进行 \(k\) 次操作,第 \(i\) 次操作要求从第 \(i\) 个盒子中取出一个元素(这个元素最开始就在该盒子中),放入任意一个你指定的盒子中,要求经过 \(k\) 次操作后

  • 所有盒子元素个数和最开始相同;
  • 所有盒子元素总和相等

询问是否存在一种操作方式使之满足,若存在,输出任意一种方案即可。

\(1\leq k\leq 15,1\leq n_i\leq 5000,|x_{i,j}|\leq 10^9\)

Solution

由题,容易发现,对于任意一个盒子,会从其中拿出一个数,再从别处(或自己拿出的)添加一个数进来。

我们将数的拿出放入关系抽象成边,即从第 \(i\) 个盒子中拿出的数要放入 \(j\) 中,那么建边 \(i\rightarrow j\)。

因为这张图要求每个节点入度和出度均为 \(1\),显然这张图只能是若干个无相交的环构成的。

现在,我们考虑所有的拿出放入关系:

假设我要从第 \(i\) 个盒子中拿出元素 \(x\),那么要使得这个盒子满足最终条件,应该被放入的元素为 \(S-sum_i+x\),其中 \(S\) 为最终每个盒子的元素总和,\(sum_i\) 表示第 \(i\) 个盒子最初的元素总和。

那么我们建边 \(x\rightarrow S-sum_i+x\)(注意:此时图与之前建的图不同)。我们需要在这张图中找到所有满足下列条件的环:

  • 环上每个元素属于不同盒子;
  • 环上每种盒子只出现一次

用 \(dfs\) 找到这些环之后我们可以将盒子状压。具体地,令 \(f_i\) 表示状态 \(i\) 中所有的盒子构成的满足条件的图是否存在。转移枚举子集 \(dp\)。

若 \(f_{2^k-1}=1\) 即有解。注意另开数据记录转移关系,方便输出方案。

Code

#include <bits/stdc++.h>
#define ll long long
#define pb push_back
using namespace std;
const int N = 5000*15+5, B = (1<<15)+5; map<ll, int> mp;
int k, n[20], id[N], kp[N], tot;
int bin[20], x[16][5005], f[B], ok[B], p[B], vis[N], s[N], top;
ll sum[20], S;
vector<int> to[N], re[B];
int l[20], r[20]; void dfs(int u, int st) {
if (vis[u]) {
int now = 0;
for (int i = top; i; i--) {
now |= bin[id[s[i]]-1];
if (u == s[i]) break;
}
if (!ok[now]) {
ok[now] = 1;
for (int i = top; i; i--) {
re[now].pb(s[i]);
if (u == s[i]) break;
}
}
return;
}
if (st&bin[id[u]-1]) return;
st |= bin[id[u]-1], vis[u] = 1, s[++top] = u;
for (auto v : to[u]) dfs(v, st);
vis[u] = 0, --top;
}
int main() {
bin[0] = 1;
for (int i = 1; i <= 15; i++) bin[i] = bin[i-1]<<1;
scanf("%d", &k);
for (int i = 1; i <= k; i++) {
scanf("%d", &n[i]);
for (int j = 1; j <= n[i]; j++)
scanf("%d", &x[i][j]), mp[x[i][j]] = ++tot,
kp[tot] = x[i][j], id[tot] = i, sum[i] += x[i][j];
S += sum[i];
}
if (S%k) {puts("No"); return 0; }
S /= k;
for (int i = 1; i <= k; i++)
for (int j = 1; j <= n[i]; j++)
if (mp.count(S-sum[i]+x[i][j])) to[mp[x[i][j]]].pb(mp[S-sum[i]+x[i][j]]);
for (int i = 1; i <= tot; i++)
dfs(i, 0);
f[0] = 1;
for (int i = 0; i < bin[k]; i++)
if (f[i]) {
int C = i^(bin[k]-1);
for (int j = C; j; j = (j-1)&C)
if (ok[j])
f[i|j] = 1, p[i|j] = i;
}
if (!f[bin[k]-1]) {puts("No"); return 0; }
int x = bin[k]-1;
while (x) {
int U = x-p[x];
for (auto i : re[U]) {
l[id[mp[S-sum[id[i]]+kp[i]]]] = S-sum[id[i]]+kp[i],
r[id[mp[S-sum[id[i]]+kp[i]]]] = id[i];
}
x = p[x];
}
puts("Yes");
for (int i = 1; i <= k; i++)
printf("%d %d\n", l[i], r[i]);
return 0;
}

[Codeforces 1242C]Sum Balance的更多相关文章

  1. Codeforces Round #599 (Div. 1) C. Sum Balance 图论 dp

    C. Sum Balance Ujan has a lot of numbers in his boxes. He likes order and balance, so he decided to ...

  2. Codeforces 85D Sum of Medians(线段树)

    题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...

  3. Codeforces Round #599 (Div. 2) E. Sum Balance

    这题写起来真的有点麻烦,按照官方题解的写法 先建图,然后求强连通分量,然后判断掉不符合条件的换 最后做dp转移即可 虽然看起来复杂度很高,但是n只有15,所以问题不大 #include <ios ...

  4. Codeforces 1442D - Sum(找性质+分治+背包)

    Codeforces 题面传送门 & 洛谷题面传送门 智商掉线/ll 本来以为是个奇怪的反悔贪心,然后便一直往反悔贪心的方向想就没想出来,看了题解才发现是个 nb 结论题. Conclusio ...

  5. Codeforces 1303G - Sum of Prefix Sums(李超线段树+点分治)

    Codeforces 题面传送门 & 洛谷题面传送门 个人感觉这题称不上毒瘤. 首先看到选一条路径之类的字眼可以轻松想到点分治,也就是我们每次取原树的重心 \(r\) 并将路径分为经过重心和不 ...

  6. codeforces 616E Sum of Remainders (数论,找规律)

    E. Sum of Remainders time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  7. Codeforces 85D Sum of Medians

    传送门 D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standa ...

  8. Codeforces 616E - Sum of Remainders

    616E Sum of Remainders Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + - + n mod m. As ...

  9. 数据结构(线段树):CodeForces 85D Sum of Medians

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

随机推荐

  1. C++ Clock函数调用及用途

    用途1 Clock函数可以有效地针对一些只能用随机化做的题目 为了提高该类代码的正确性,我们期望它运行的次数在要求时限内运行足够多 因此将Clock函数充当计时器 用途2 计时判断负环 原理: 给定一 ...

  2. PB 点击标题行排序和双击打开编辑页面共存不冲突的方法

    根据doubleclicked() 事件的参数 row 进行判断 大于0才进入编辑页面(不能用getrow()事件获取行id,双击标题行获取的是1) if row>0 then event ue ...

  3. SQL注入获取Sa账号密码

    漏洞位置:http://168.1.1.81/Information/Search?Keyword=1111 漏洞利用: MSSQL 2000 http://168.1.1.81/Informatio ...

  4. ADO.net(内置类区别)随记

    Ado.net使用流程 SqlConnection->open->SqlCommand(sqlstring,conn)->(ExcuteNonQuery \ExecuteScalar ...

  5. angular复习笔记2-架构总览

    angular架构总览 一个完整的Angular应用主要由6个重要部分构成,分别是:组件.模板.指令.服务.依赖注入和路由.这些组成部分各司其职,而又紧密协作,它们的关系如图所示. 与用户直接交互的是 ...

  6. MVC的Views中使用递归生成Html【转】

    在开发过程中往往会有一个需求,就是将一个树状的数据结构在视图中表示出来.例如最传统的多级分类,系统中有一系列根分类,每个分类中又带有一些子分类,而我们的目标便是在页面上生成一个由ul和li嵌套组成的H ...

  7. A Deep Dive Into Draggable and DragTarget in Flutter

    https://medium.com/flutter-community/a-deep-dive-into-draggable-and-dragtarget-in-flutter-487919f6f1 ...

  8. 【面试突击】-Redis常见面试题(二)

    1.什么是Redis?简述它的优缺点? Redis本质上是一个Key-Value类型的内存数据库,很像memcached,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到 ...

  9. npm全局模块卸载及默认安装目录修改方法

    卸载全局安装模块  npm uninstall -g <package> 卸载后,你可以到 /node_modules/ 目录下查看包是否还存在,或者使用以下命令查看:npm ls npm ...

  10. poll_wait阻塞/唤醒

    1. 应用阻塞 应用程序使用 select() 或 poll() 调用设备驱动程序的 poll() 函数,该函数把输入输出复用处理的等待队列追加到由内核管理的进程的 poll_table()上 #in ...