二、通过DataFrame实战电影点评系统

  DataFrameAPI是从Spark 1.3开始就有的,它是一种以RDD为基础的分布式无类型数据集,它的出现大幅度降低了普通Spark用户的学习门槛。

  DataFrame类似于传统数据库中的二维表格。DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame表示的二维表数据集的每一列都带有名称和类型。这使得Spark SQL得以解析到具体数据的结构信息,从而对DataFrame中的数据源以及对DataFrame的操作进行了非常有效的优化,从而大幅提升了运行效率。

  现在我们通过实现几个功能来了解DataFrame的具体用法。先来看第一个功能:通过DataFrame实现某部电影观看者中男性和女性不同年龄分别有多少人。

    println("========================================")
println("功能一:通过DataFrame实现某部电影观看者中男性和女性不同年龄人数")
// 首先把User的数据格式化,即在RDD的基础上增加数据的元数据信息
val schemaForUsers = StructType(
"UserID::Gender::Age::OccupationID::Zip-code".split("::")
.map(column => StructField(column,StringType,true))
)
// 然后把我们的每一条数据变成以Row为单位的数据
val usersRDDRows = usersRDD.map(_.split("::")).map(
line => Row(line(0).trim(),line(1).trim(),line(2).trim(),line(3).trim(),line(4).trim())
)
// 使用SparkSession的createDataFrame方法,结合Row和StructType的元数据信息 基于RDD创建DataFrame,
// 这时RDD就有了元数据信息的描述
val usersDataFrame = spark.createDataFrame(usersRDDRows, schemaForUsers)
// 也可以对StructType调用add方法来对不同的StructField赋予不同的类型
val schemaforratings = StructType(
"UserID::MovieID".split("::")
.map(column => StructField(column,StringType,true)))
.add("Rating",DoubleType,true)
.add("Timestamp",StringType,true)
val ratingsRDDRows = ratingsRDD.map(_.split("::")).map(
line => Row(line(0).trim(),line(1).trim(),line(2).trim().toDouble,line(3).trim())
)
val ratingsDataFrame = spark.createDataFrame(ratingsRDDRows, schemaforratings)
// 接着构建movies的DataFrame
val schemaformovies = StructType(
"MovieID::Title::Genres".split("::")
.map(column => StructField(column,StringType,true))
)
val moviesRDDRows = moviesRDD.map(_.split("::")).map(line => Row(line(0).trim(),line(1).trim(),line(2).trim()))
val moviesDataFrame = spark.createDataFrame(moviesRDDRows, schemaformovies)
// 这里能够直接通过列名MovieID为1193过滤出这部电影,这些列名都是在上面指定的
/*
* Join的时候直接指定基于UserID进行Join,这相对于原生的RDD操作而言更加方便快捷
* 直接通过元数据信息中的Gender和Age进行数据的筛选
* 直接通过元数据信息中的Gender和Age进行数据的groupBy操作
* 基于groupBy分组信息进行count统计操作,并显示出分组统计后的前10条信息
*/
ratingsDataFrame.filter(s"MovieID==1193")
.join(usersDataFrame,"UserID")
.select("Gender", "Age")
.groupBy("Gender", "Age")
.count().show(10)

   

  上面案例中的代码无论是从思路上,还是从结构上都和SQL语句十分类似,下面通过写SQL语句的方式来实现上面的案例。

    println("========================================")
println("功能二:用LocalTempView实现某部电影观看者中不同性别不同年龄分别有多少人")
// 既然使用SQL语句,那么表肯定是要有的,所以需要先把DataFrame注册为临时表
ratingsDataFrame.createTempView("ratings")
usersDataFrame.createTempView("users")
// 然后写SQL语句,直接使用SparkSession的sql方法执行SQL语句即可。
val sql_local = "SELECT Gender,Age,count(*) from users u join ratings as r on u.UserID=r.UserID where MovieID=1193 group by Gender,Age"
spark.sql(sql_local).show(10)

   

  这篇博文主要来自《Spark大数据商业实战三部曲》这本书里面的第一章,内容有删减,还有本书的一些代码的实验结果。随书附赠的代码库链接为:https://github.com/duanzhihua/code-of-spark-big-data-business-trilogy

  

Spark实战电影点评系统(二)的更多相关文章

  1. Spark实战电影点评系统(一)

    一.通过RDD实战电影点评系统 日常的数据来源有很多渠道,如网络爬虫.网页埋点.系统日志等.下面的案例中使用的是用户观看电影和点评电影的行为数据,数据来源于网络上的公开数据,共有3个数据文件:uers ...

  2. 基于Spark的电影推荐系统(实战简介)

    写在前面 一直不知道这个专栏该如何开始写,思来想去,还是暂时把自己对这个项目的一些想法 和大家分享 的形式来展现.有什么问题,欢迎大家一起留言讨论. 这个项目的源代码是在https://github. ...

  3. 实战Java虚拟机之二“虚拟机的工作模式”

    今天开始实战Java虚拟机之二:“虚拟机的工作模式”. 总计有5个系列 实战Java虚拟机之一“堆溢出处理” 实战Java虚拟机之二“虚拟机的工作模式” 实战Java虚拟机之三“G1的新生代GC” 实 ...

  4. 编程实战——电影管理器之界面UI及动画切换

    编程实战——电影管理器之界面UI及动画切换 在前文“编程实战——电影管理器之利用MediaInfo获取高清视频文件的相关信息”中提到电影管理器的目的是方便播放影片,在想看影片时不需要在茫茫的文件夹下找 ...

  5. ETL利器Kettle实战应用解析系列二

    本系列文章主要索引如下: 一.ETL利器Kettle实战应用解析系列一[Kettle使用介绍] 二.ETL利器Kettle实战应用解析系列二 [应用场景和实战DEMO下载] 三.ETL利器Kettle ...

  6. (转载)Android项目实战(三十二):圆角对话框Dialog

    Android项目实战(三十二):圆角对话框Dialog   前言: 项目中多处用到对话框,用系统对话框太难看,就自己写一个自定义对话框. 对话框包括:1.圆角 2.app图标 , 提示文本,关闭对话 ...

  7. 基于Spark的电影推荐系统(推荐系统~2)

    第四部分-推荐系统-数据ETL 本模块完成数据清洗,并将清洗后的数据load到Hive数据表里面去 前置准备: spark +hive vim $SPARK_HOME/conf/hive-site.x ...

  8. 基于Spark的电影推荐系统(推荐系统~4)

    第四部分-推荐系统-模型训练 本模块基于第3节 数据加工得到的训练集和测试集数据 做模型训练,最后得到一系列的模型,进而做 预测. 训练多个模型,取其中最好,即取RMSE(均方根误差)值最小的模型 说 ...

  9. 基于Spark的电影推荐系统(推荐系统~7)

    基于Spark的电影推荐系统(推荐系统~7) 22/100 发布文章 liuge36 第四部分-推荐系统-实时推荐 本模块基于第4节得到的模型,开始为用户做实时推荐,推荐用户最有可能喜爱的5部电影. ...

随机推荐

  1. smartnic

    19年趋势: Intel® 2019网络技术研讨会圆满落幕 SANTOS: Flow and HQoS Acceleration Over DPDK Using Intel Programmable ...

  2. 04-树6 Complete Binary Search Tree (30 分)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  3. itext7 html转pdf实现

    公司最近做一个交易所项目,里面涉及一个需求就是将html模板,在填充数据后转换为pdf,这样防止数据更改,下面是具体实现 1 pom文件 <dependency> <groupId& ...

  4. cesium地形瓦片(Quantized-mesh)格式

    目录 1.切片规则 2.瓦片格式分析 2.1.数据头部 2.顶点数据 2.3.索引数据 2.4.扩展数据 参考资料: quantized-mesh-1.0 terrain format(用于三维可视化 ...

  5. input file上传文件弹出框的默认格式设置

    我们使用html的input 标签type="flie"时,如何设置默认可选的文件格式 <input id="doc_file" type="f ...

  6. Android NDK编译选项设置

    Android NDK编译选项设置 网易加固关注 0.5472016.08.22 14:07:00字数 3,034阅读 6,805 在Android NDK开发中,有两个重要的文件:Android.m ...

  7. MathML

    MathML https://developer.mozilla.org/en-US/docs/Web/MathML/Examples/MathML_Pythagorean_Theorem Mathe ...

  8. php nl2br 将\n变成<br />

    <?php $str="h t m l"; //定义一个多处换行的字串 echo "未处理前的输出形式:<br />{$str}"; #nl2 ...

  9. CentOS7下安装Nexus私服及基础配置

    环境准备 VMware上安装CentOS7 XShell/Xftp NexusOSS-3.10 jdk1.8 安装 使用root用户登录,将安装包均放置在/usr/local文件夹下 使用Xshell ...

  10. EasyNVR摄像机网页无插件直播方案H5前端构建之:bootstrap-datepicker日历插件的实时动态展现

    EasyNVR场景需求 基础:不管是城市监控还是园区管理或者是幼儿园监控,这些安防监控需求已经成为我们生活中不可或缺的重要一环,这不仅仅是提升城市管理水平和人民群众安全感的现实需求,也是完善社会治安消 ...