In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2 <= N <= 63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] ... c[N] f[N]

where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤), then followed by M student submissions. Each student submission consists of N lines, each in the format:

c[i] code[i]

where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.

Output Specification:

For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

Sample Input:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

Sample Output:

Yes
Yes
No
No
#include<iostream>
#include<cstring>
using namespace std;
const int maxn = ; typedef struct TreeNode* Tree;
struct TreeNode
{
Tree left,right;
int weight;
}; typedef struct HeapNode* Heap;
struct HeapNode
{
TreeNode Data[maxn];
int size;
}; int n,m;
int w[maxn];
char ch[maxn];
int codelen;
int cnt2,cnt0; Tree creatTree();
Heap creatHeap();
void Insert(Heap H, TreeNode T);
Tree Huffman(Heap H);
Tree Delete(Heap H);
int WPL(Tree T, int depth);
bool Judge();
void JudgeTree(Tree T); int main()
{
cin >> n;
Tree T = creatTree();
Heap H = creatHeap(); for (int i = ; i < n; i++)
{
getchar();
cin >> ch[i] >> w[i];
H->Data[H->size].left = H->Data[H->size].right = NULL;
T->weight = w[i];
Insert(H,*T);
} T = Huffman(H);
codelen = WPL(T,);
//printf("%d\n",codelen); cin >> m;
while (m--)
{
if (Judge())
{
printf("Yes\n");
}
else
{
printf("No\n");
}
} return ;
} Tree creatTree()
{
Tree T = new TreeNode;
T->left = T->right = NULL;
T->weight = ;
return T;
} Heap creatHeap()
{
Heap H = new HeapNode;
H->Data[].weight = -;
H->size = ;
return H;
} void Insert(Heap H, TreeNode T)
{
int i = ++H->size;
for (; H->Data[i/].weight > T.weight; i /= )
{
H->Data[i] = H->Data[i/];
}
H->Data[i] = T;
} Tree Huffman(Heap H)
{
Tree T = creatTree();
while (H->size > )
{
T->left = Delete(H);
T->right = Delete(H);
T->weight = T->left->weight + T->right->weight;
Insert(H,*T);
}
T = Delete(H);
return T;
} Tree Delete(Heap H)
{
int parent,child;
TreeNode Tmp = H->Data[H->size--];
Tree T = creatTree();
*T = H->Data[];
for (parent = ; *parent <= H->size; parent = child)
{
child = *parent;
if (child < H->size &&
H->Data[child+].weight < H->Data[child].weight)
{
child++;
} if (H->Data[child].weight > Tmp.weight)
{
break;
}
H->Data[parent] = H->Data[child];
}
H->Data[parent] = Tmp;
return T;
} int WPL(Tree T, int depth)
{
if (!T->left && !T->right)
{
return depth * (T->weight);
}
else
{
return WPL(T->left,depth+) + WPL(T->right,depth+);
}
} bool Judge()
{
char s1[maxn],s2[maxn];
bool flag = true;
Tree T = creatTree();
Tree pt = NULL;
int wgh; for (int i = ; i < n; i++)
{
cin >> s1 >> s2; if (strlen(s2) > n)
{
return ;
} int j;
for (j = ; ch[j] != s1[]; j++)
{
;
}
wgh = w[j];
pt = T;
for (j = ; s2[j]; j++)
{
if (s2[j] == '')
{
if (!pt->left)
{
pt->left = creatTree();
}
pt = pt->left;
}
if (s2[j] == '')
{
if (!pt->right)
{
pt->right = creatTree();
}
pt = pt->right;
} if (pt->weight)
{
flag = false;
}
if (!s2[j+])
{
if (pt->left || pt->right)
{
flag = false;
}
else
{
pt->weight = wgh;
}
}
}
} if (!flag)
{
return ;
}
cnt0 = cnt2 = ;
JudgeTree(T); if (cnt2 != cnt0-)
{
return ;
}
if (codelen == WPL(T,))
{
return ;
}
else
{
return ;
}
} void JudgeTree(Tree T)
{
if (T)
{
if (!T->left && !T->right)
{
cnt0++;
}
else if(T->left && T->right)
{
cnt2++;
}
else
{
cnt0 = ;
} JudgeTree(T->left);
JudgeTree(T->right);
}
}
 

05-树9 Huffman Codes (30 分)的更多相关文章

  1. pta5-9 Huffman Codes (30分)

    5-9 Huffman Codes   (30分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  2. PTA 05-树9 Huffman Codes (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes   (30分) In 1953, David ...

  3. pat树之专题(30分)

    (好好复习是王道) 1115. Counting Nodes in a BST (30) 分析:简单题——将bst树构造出来,然后给每个节点打上高度.最后求出树的高度.然后count树高的节点数加上树 ...

  4. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  5. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  6. 05-树9 Huffman Codes(30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  7. PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****

    1057 Stack (30 分)   Stack is one of the most fundamental data structures, which is based on the prin ...

  8. Huffman codes

    05-树9 Huffman Codes(30 分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  9. PAT 甲级 1053 Path of Equal Weight (30 分)(dfs,vector内元素排序,有一小坑点)

    1053 Path of Equal Weight (30 分)   Given a non-empty tree with root R, and with weight W​i​​ assigne ...

随机推荐

  1. Oracle使用中的常规操作总结

    写一篇在使用Oracle过程中一些常用的操作,以便于忘记的时候查看 一.创建用户和给用户赋予权限 create user 用户名 identified by 密码; --12c一下版本 create ...

  2. C# 进程 与 线程

    C#多线程和线程池1.0.线程的和进程的关系以及优缺点windows系统是一个多线程的操作系统.一个程序至少有一个进程,一个进程至少有一个线程.进程是线程的容器,一个C#客户端程序开始于一个单独的线程 ...

  3. 前端1-----A标签 (锚点)

    Title 头部,顶端, 点击跳转到id='abc' 1 2 到百度这里,点击跳转百度 3 到这里了 4 alex1 5 6 根据id 从底部到头      根据id='a1' 到指定位置      ...

  4. 2019-08-02 原生ajax搜索

    <html> <meta charset="utf-8"/> <head><title>搜索页</title></ ...

  5. C/ C++ 快速上手

    C++ 快速上手 (一)https://www.cnblogs.com/cosmo89929/archive/2012/12/22/2828745.html C++ 快速上手 (二)https://w ...

  6. 从CMS到G1:LinkedIn个人主页调优实战

    本文转载自公众号:阿飞的博客,阅读大约需要13分钟.阿飞是我认识几年的好友,对技术有很强的专研精神,跟他讨论GC问题的时候一些观点都很深刻. LinkedIn中的个人主页是访问量最多的页面之一,它允许 ...

  7. 【恢复】Redo日志文件丢失的恢复

    第一章 Redo文件丢失的恢复 1.1  online redolog file 丢失 联机Redo日志是Oracle数据库中比较核心的文件,当Redo日志文件异常之后,数据库就无法正常启动,而且有丢 ...

  8. Apache Zookeerper搭建

    08-Apache Zookeerper--概述和集群相关概念(主从.主备)    01) zookeeper的介绍        01) 分布式协调服务的开源框架,主要解决分布式集群中应用系统间的一 ...

  9. Linux普通用户登录后,命令行提示:-bash-4.1$ ,原因分析及解决

    原文 有时候在使用用户登陆Linux系统时会发现,命令行提示符成了:-bash-4.1$,不显示用户名,路径信息. 原因:用户家目录里面与环境变量有关的文件被删除所导致的 也就是这俩文件:.bash_ ...

  10. 服务器架构前面加了防火墙,Nginx如何获取客户端真实ip???

    在大部分实际业务场景中,网站访问请求并不是简单地从用户(访问者)的浏览器直达网站的源站服务器,中间可能经过所部署的CDN.高防IP.WAF等代理服务器.例如,网站可能采用这样的部署架构:用户 > ...