In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.

Input Specification:

Each input file contains one test case. For each case, the first line gives an integer N (2 <= N <= 63), then followed by a line that contains all the N distinct characters and their frequencies in the following format:

c[1] f[1] c[2] f[2] ... c[N] f[N]

where c[i] is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, and f[i] is the frequency of c[i] and is an integer no more than 1000. The next line gives a positive integer M (≤), then followed by M student submissions. Each student submission consists of N lines, each in the format:

c[i] code[i]

where c[i] is the i-th character and code[i] is an non-empty string of no more than 63 '0's and '1's.

Output Specification:

For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.

Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.

Sample Input:

7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11

Sample Output:

Yes
Yes
No
No
#include<iostream>
#include<cstring>
using namespace std;
const int maxn = ; typedef struct TreeNode* Tree;
struct TreeNode
{
Tree left,right;
int weight;
}; typedef struct HeapNode* Heap;
struct HeapNode
{
TreeNode Data[maxn];
int size;
}; int n,m;
int w[maxn];
char ch[maxn];
int codelen;
int cnt2,cnt0; Tree creatTree();
Heap creatHeap();
void Insert(Heap H, TreeNode T);
Tree Huffman(Heap H);
Tree Delete(Heap H);
int WPL(Tree T, int depth);
bool Judge();
void JudgeTree(Tree T); int main()
{
cin >> n;
Tree T = creatTree();
Heap H = creatHeap(); for (int i = ; i < n; i++)
{
getchar();
cin >> ch[i] >> w[i];
H->Data[H->size].left = H->Data[H->size].right = NULL;
T->weight = w[i];
Insert(H,*T);
} T = Huffman(H);
codelen = WPL(T,);
//printf("%d\n",codelen); cin >> m;
while (m--)
{
if (Judge())
{
printf("Yes\n");
}
else
{
printf("No\n");
}
} return ;
} Tree creatTree()
{
Tree T = new TreeNode;
T->left = T->right = NULL;
T->weight = ;
return T;
} Heap creatHeap()
{
Heap H = new HeapNode;
H->Data[].weight = -;
H->size = ;
return H;
} void Insert(Heap H, TreeNode T)
{
int i = ++H->size;
for (; H->Data[i/].weight > T.weight; i /= )
{
H->Data[i] = H->Data[i/];
}
H->Data[i] = T;
} Tree Huffman(Heap H)
{
Tree T = creatTree();
while (H->size > )
{
T->left = Delete(H);
T->right = Delete(H);
T->weight = T->left->weight + T->right->weight;
Insert(H,*T);
}
T = Delete(H);
return T;
} Tree Delete(Heap H)
{
int parent,child;
TreeNode Tmp = H->Data[H->size--];
Tree T = creatTree();
*T = H->Data[];
for (parent = ; *parent <= H->size; parent = child)
{
child = *parent;
if (child < H->size &&
H->Data[child+].weight < H->Data[child].weight)
{
child++;
} if (H->Data[child].weight > Tmp.weight)
{
break;
}
H->Data[parent] = H->Data[child];
}
H->Data[parent] = Tmp;
return T;
} int WPL(Tree T, int depth)
{
if (!T->left && !T->right)
{
return depth * (T->weight);
}
else
{
return WPL(T->left,depth+) + WPL(T->right,depth+);
}
} bool Judge()
{
char s1[maxn],s2[maxn];
bool flag = true;
Tree T = creatTree();
Tree pt = NULL;
int wgh; for (int i = ; i < n; i++)
{
cin >> s1 >> s2; if (strlen(s2) > n)
{
return ;
} int j;
for (j = ; ch[j] != s1[]; j++)
{
;
}
wgh = w[j];
pt = T;
for (j = ; s2[j]; j++)
{
if (s2[j] == '')
{
if (!pt->left)
{
pt->left = creatTree();
}
pt = pt->left;
}
if (s2[j] == '')
{
if (!pt->right)
{
pt->right = creatTree();
}
pt = pt->right;
} if (pt->weight)
{
flag = false;
}
if (!s2[j+])
{
if (pt->left || pt->right)
{
flag = false;
}
else
{
pt->weight = wgh;
}
}
}
} if (!flag)
{
return ;
}
cnt0 = cnt2 = ;
JudgeTree(T); if (cnt2 != cnt0-)
{
return ;
}
if (codelen == WPL(T,))
{
return ;
}
else
{
return ;
}
} void JudgeTree(Tree T)
{
if (T)
{
if (!T->left && !T->right)
{
cnt0++;
}
else if(T->left && T->right)
{
cnt2++;
}
else
{
cnt0 = ;
} JudgeTree(T->left);
JudgeTree(T->right);
}
}
 

05-树9 Huffman Codes (30 分)的更多相关文章

  1. pta5-9 Huffman Codes (30分)

    5-9 Huffman Codes   (30分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  2. PTA 05-树9 Huffman Codes (30分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/671 5-9 Huffman Codes   (30分) In 1953, David ...

  3. pat树之专题(30分)

    (好好复习是王道) 1115. Counting Nodes in a BST (30) 分析:简单题——将bst树构造出来,然后给每个节点打上高度.最后求出树的高度.然后count树高的节点数加上树 ...

  4. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  5. 05-树9 Huffman Codes (30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  6. 05-树9 Huffman Codes(30 分)

    In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redunda ...

  7. PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****

    1057 Stack (30 分)   Stack is one of the most fundamental data structures, which is based on the prin ...

  8. Huffman codes

    05-树9 Huffman Codes(30 分) In 1953, David A. Huffman published his paper "A Method for the Const ...

  9. PAT 甲级 1053 Path of Equal Weight (30 分)(dfs,vector内元素排序,有一小坑点)

    1053 Path of Equal Weight (30 分)   Given a non-empty tree with root R, and with weight W​i​​ assigne ...

随机推荐

  1. 使用PS打开图片的常见姿势

    我们经常会使用PS对现有的图片进行编辑.所以每个人都会经历打开图片这一步骤. 下面为大家介绍一下PS打开图片的这一步的常见方式吧: 第一种:使用文件资源管理器(也就是双击我的电脑弹出来的窗口) 第二种 ...

  2. jq动画插件,自制基于vue的圆形时钟

    首先附上jq插件库,里面的东西太炫了,建议学前端的可以看看学习下:http://www.jq22.com/ 里面有个“超个性动画版本的个人简历”,通过屏幕上不断打印内容,改变相应样式来实现动画简历,我 ...

  3. SQL 查询表外键_T-Sql 2016——级联删除外键查询

    SELECT fk.name AS foreign_key_name, oSub.name AS table_name, SubCol.name AS table_column, oMain.name ...

  4. Spring Security实现OAuth2.0授权服务 - 基础版

    一.OAuth2.0协议 1.OAuth2.0概述 OAuth2.0是一个关于授权的开放网络协议. 该协议在第三方应用与服务提供平台之间设置了一个授权层.第三方应用需要服务资源时,并不是直接使用用户帐 ...

  5. pands模块的妙用爬取网页中的表格

    拿我这篇为例https://www.cnblogs.com/pythonywy/p/11574340.html import pandas as pd df = pd.read_html('https ...

  6. Java自学-类和对象 this

    Java 中的 this this 这个关键字,相当于普通话里的"我" 小明说 "我吃了" 这个时候,"我" 代表小明 小红说 " ...

  7. Fedora搭dokuwiki的步骤 以apache2.4为例

    官网下载dokuwiki的包,解压到/var/www/html/下 修改dokuwiki的权限.拥有者/组 为apache 安装PHP 在/etc/httpd/conf 创建dokuwiki的配置文件 ...

  8. APS系统如何让企业实现“多赢”?看高博通信是怎么做的

    高博通信(上海)有限公司凭籍在超精密产业中的技术积累, 强大的资金优势以及与一流大学的联合,使得其正成为国内超精密电子制造行业的领导者. 雄厚的技术实力和专业的团队赢得了波音,空客公司等国际航空器制造 ...

  9. .NET异步资料收集

    个人认为应该是.NET关于并行编程 / 异步编程最权威的内容来源(虽然看起来里面的内容离现在已经好几年了,但是大部分内容都不过时) https://devblogs.microsoft.com/pfx ...

  10. Solidity合约中的整数溢出漏洞事件

    事件 2018年4月23日 BEC 一夜被偷64亿 2018年4月25日 SMT 再爆类似漏洞,火币Pro和OKEx相继暂停了SMT交易 2018年4月25日 BEC.SMT现重大漏洞,这8个智能合约 ...