Given an array of  integers , we say a set  is a prime set of the given array, if  and  is prime.

BaoBao has just found an array of  integers  in his pocket. He would like to select at most  prime set of that array to maximize the size of the union of the selected sets. That is to say, to maximize  by carefully selecting and , where  and  is a prime set of the given array. Please help BaoBao calculate the maximum size of the union set.

Input

There are multiple test cases. The first line of the input is an integer , indicating the number of test cases. For each test case:

The first line contains two integers  and  (, ), their meanings are described above.

The second line contains  integers  (), indicating the given array.

It's guaranteed that the sum of  over all test cases will not exceed .

<h4< dd="">Output

For each test case output one line containing one integer, indicating the maximum size of the union of at most  prime set of the given array.

<h4< dd="">Sample Input

4
4 2
2 3 4 5
5 3
3 4 12 3 6
6 3
1 3 6 8 1 1
1 0
1

<h4< dd="">Sample Output

4
3
6
0

<h4< dd="">Hint

For the first sample test case, there are 3 prime sets: {1, 2}, {1, 4} and {2, 3}. As , we can select {1, 4} and {2, 3} to get the largest union set {1, 2, 3, 4} with a size of 4.

For the second sample test case, there are only 2 prime sets: {1, 2} and {2, 4}. As , we can select both of them to get the largest union set {1, 2, 4} with a size of 3.

For the third sample test case, there are 7 prime sets: {1, 3}, {1, 5}, {1, 6}, {2, 4}, {3, 5}, {3, 6} and {5, 6}. As , we can select {1, 3}, {2, 4} and {5, 6} to get the largest union set {1, 2, 3, 4, 5, 6} with a size of 6.

题解:题意是给你n个数,然后让你找满足<x,y> x+y为素数这样的二元集合元素的交集,且集合的数量不超过m个;

我们可以先筛选出素数,然后暴力匹配,跑出每一个数字可以和哪些其他的数字组合成素数;

然后我们跑二分图最大匹配ans,得到的这些元素对<a,b> <c,d>中的元素各部相等,判断一下,集合的数量是否大于等于m;如果是,则输出2*m;

否则,我们统计没有匹配的数的数量ans2,然后答案等于 ans*2+min(ans2,m-ans);

参考代码:

 #include<bits/stdc++.h>
using namespace std;
const int maxn=+;
const int masn=2e6+; int t,n,m,ans,head[maxn],p[maxn],temp[maxn];
bool vis[maxn],prime[masn];
vector<int> vec[maxn]; void Not_Prime()
{
for(int i=;i<masn;i++)
if(!prime[i])
for(int j=i+i;j<masn;j+=i)
prime[j]=true;
} bool dfs(int x)
{
vis[x]=true;
int len=vec[x].size();
for(int i=;i<len;i++)
{
int v=vec[x][i];
if(!vis[v])
{
vis[v]=true;
if(temp[v]==||dfs(temp[v]))
{
temp[v]=x; temp[x]=v;
return true;
}
}
}
return false;
} int main()
{
Not_Prime();
cin>>t;
while(t--)
{
ans=;
memset(head,-,sizeof(head));
cin>>n>>m;
for(int i=;i<=n;i++) cin>>p[i],vec[i].clear();
memset(temp,-,sizeof(temp));
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
if(!prime[p[i]+p[j]])
{
vec[i].push_back(j);
vec[j].push_back(i);
temp[i]=temp[j]=;
}
int ans1=,ans2=;
for(int i=;i<=n;i++)
if(temp[i]==)
{
memset(vis,false,sizeof(vis));
if(dfs(i)) ans1++;
}
for(int i=;i<=n;i++) if(temp[i]==) ans2++;
if(ans1>=m) cout<< *m <<endl;
else cout<< ans1*+min(m-ans1,ans2) <<endl;
}
return ;
}
  

2017 CCPC秦皇岛 H题 Prime set的更多相关文章

  1. HDU 6271 Master of Connected Component(2017 CCPC 杭州 H题,树分块 + 并查集的撤销)

    题目链接  2017 CCPC Hangzhou Problem H 思路:对树进行分块.把第一棵树分成$\sqrt{n}$块,第二棵树也分成$\sqrt{n}$块.    分块的时候满足每个块是一个 ...

  2. 2017 CCPC秦皇岛 A题 A Ballon Robot

    The 2017 China Collegiate Programming Contest Qinhuangdao Site is coming! There will be  teams parti ...

  3. 2017 CCPC秦皇岛 M题 Safest Buildings

    PUBG is a multiplayer online battle royale video game. In the game, up to one hundred players parach ...

  4. 2017 CCPC秦皇岛 L题 One Dimensions Dave

    BaoBao is trapped in a one-dimensional maze consisting of  grids arranged in a row! The grids are nu ...

  5. 2017 CCPC秦皇岛 E题 String of CCPC

    BaoBao has just found a string  of length  consisting of 'C' and 'P' in his pocket. As a big fan of ...

  6. 2017CCPC秦皇岛 H题Prime Set&&ZOJ3988

    题意: 定义一种集合,只有两个数,两个数不同且加起来为素数.要从n个数里抽出数字组成该集合(数字也可以是1~n,这个好懵圈啊),要求你选择最多k个该种集合组成一个有最多元素的集合,求出元素的数量. 思 ...

  7. 2017 CCPC秦皇岛 G题 Numbers

    DreamGrid has a nonnegative integer . He would like to divide  into nonnegative integers  and minimi ...

  8. 2017 ccpc哈尔滨 A题 Palindrome

    2017 ccpc哈尔滨 A题 Palindrome 题意: 给一个串\(T\),计算存在多少子串S满足\(S[i]=S[2n−i]=S[2n+i−2](1≤i≤n)\) 思路: 很明显这里的回文串长 ...

  9. HDU 6268 Master of Subgraph (2017 CCPC 杭州 E题,树分治 + 树上背包)

    题目链接  2017 CCPC Hangzhou  Problem E 题意  给定一棵树,每个点有一个权值,现在我们可以选一些连通的点,并且把这点选出来的点的权值相加,得到一个和. 求$[1, m] ...

随机推荐

  1. 使用JSP脚本在页面输出九九乘法表

    <% int i,j; for(i=1;i<10;i++) { for(j=1;j<=i;j++) { out.println(i+"*"+j+"=&q ...

  2. nyoj 49-开心的小明(动态规划, 0-1背包问题)

    49-开心的小明 内存限制:64MB 时间限制:1000ms Special Judge: No accepted:7 submit:11 题目描述: 小明今天很开心,家里购置的新房就要领钥匙了,新房 ...

  3. Docker从入门到实践(1)

    一.Docker简介 1.1.什么是 Docker Docker 最初是 dotCloud 公司创始人 Solomon Hykes 在法国期间发起的一个公司内部项目,它是基于 dotCloud 公司多 ...

  4. 力扣(LeetCode)环形链表 个人题解

    给定一个链表,判断链表中是否有环. 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始). 如果 pos 是 -1,则在该链表中没有环. 示例 1: 输入: ...

  5. python: __future__的介绍

    __future__ 给旧版本python提供新版本python的特性例如: 在python2.X中可以使用print"" 也可以使用print() 但是加载这个print的新特性 ...

  6. mac安装配置Tomcat

    一.安装Tomcat 1.首先到官网下载Tomcat:https://tomcat.apache.org/download-90.cgi 2.解压tomcat文件,最好把它文件名重命名为"T ...

  7. Install python3

    wget https://www.python.org/ftp/python/3.7.4/Python-3.7.4.tgz tar xf Python-3.7.4.tgz cd Python-3.7. ...

  8. 新闻实时分析系统Hive与HBase集成进行数据分析

    (一)Hive 概述 (二)Hive在Hadoop生态圈中的位置 (三)Hive 架构设计 (四)Hive 的优点及应用场景 (五)Hive 的下载和安装部署 1.Hive 下载 Apache版本的H ...

  9. selenium处理隐藏元素的方法

    <li class="navbar-nav-item ">       <a href="#" id="cust"> ...

  10. 删除排序数组中的重复项II

    Given a sorted array nums, remove the duplicates in-place such that duplicates appeared at most twic ...