hdu 1878 欧拉回路(联通<并查集> + 偶数点)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 18576 Accepted Submission(s): 7219
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
1
0
C/C++:
#include <map>
#include <queue>
#include <cmath>
#include <vector>
#include <string>
#include <cstdio>
#include <cstring>
#include <climits>
#include <iostream>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std;
const int my_max = ; int n, m, my_pre[my_max], a, b, my_node[my_max]; int my_find(int x)
{
int n = x;
while (n != my_pre[n])
n = my_pre[n];
int i = x, j;
while (n != my_pre[i])
{
j = my_pre[i];
my_pre[i] = n;
i = j;
}
return n;
} bool is_eulerian()
{
for (int i = ; i <= n; ++ i)
if (my_node[i] & ) return false;
int temp = my_find();
for (int i = ; i <= n; ++ i)
if (my_find(i) != temp) return false;
return true;
} int main()
{
while (scanf("%d", &n), n)
{
scanf("%d", &m);
memset(my_node, , sizeof(my_node));
for (int i = ; i <= n; ++ i)
my_pre[i] = i; while (m --)
{
scanf("%d%d", &a, &b);
my_node[a] ++, my_node[b] ++;
int n1 = my_find(a), n2 = my_find(b);
my_pre[n1] = n2;
} if (is_eulerian()) printf("1\n");
else printf("0\n");
}
return ;
}
hdu 1878 欧拉回路(联通<并查集> + 偶数点)的更多相关文章
- HDU 1811 拓扑排序 并查集
有n个成绩,给出m个分数间的相对大小关系,问是否合法,矛盾,不完全,其中即矛盾即不完全输出矛盾的. 相对大小的关系可以看成是一个指向的条件,如此一来很容易想到拓扑模型进行拓扑排序,每次检查当前入度为0 ...
- hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点)
hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点) 题意: 给一张无向连通图,有两种操作 1 u v 加一条边(u,v) 2 u v 计算u到v路径上桥的个数 ...
- HDU 3018 Ant Trip (并查集求连通块数+欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3018 题目大意:有n个点,m条边,人们希望走完所有的路,且每条道路只能走一遍.至少要将人们分成几组. ...
- HDU 1878 欧拉回路(判断欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 题目大意:欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一 ...
- HDU 1878 欧拉回路
并查集水题. 一个图存在欧拉回路的判断条件: 无向图存在欧拉回路的充要条件 一个无向图存在欧拉回路,当且仅当该图所有顶点度数都是偶数且该图是连通图. 有向图存在欧拉回路的充要条件 一个有向图存在欧拉回 ...
- Hdu 5458 Stability (LCA + 并查集 + 树状数组 + 缩点)
题目链接: Hdu 5458 Stability 题目描述: 给出一个还有环和重边的图G,对图G有两种操作: 1 u v, 删除u与v之间的一天边 (保证这个边一定存在) 2 u v, 查询u到v的路 ...
- HDU 1878 欧拉回路 图论
解题报告:题目大意,给出一个无向图,判断图中是否存在欧拉回路. 判断一个无向图中是否有欧拉回路有一个充要条件,就是这个图中不存在奇度定点,然后还要判断的就是连通分支数是否为1,即这个图是不是连通的,这 ...
- <hdu - 1232> 畅通工程 并查集问题 (注意中的细节)
本题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1232 结题思路:因为题目是汉语的,那我就不解释题意了,要求的是最少建设的道路,我们可以用并查集来做这 ...
- HDU - 4496 City 逆向并查集
思路:逆向并查集,逆向加入每一条边即可.在获取联通块数量的时候,直接判断新加入的边是否合并了两个集合,如果合并了说明联通块会减少一个,否则不变. AC代码 #include <cstdio> ...
- HDU 5441 Travel(并查集+统计节点个数)
http://acm.hdu.edu.cn/showproblem.php?pid=5441 题意:给出一个图,每条边有一个距离,现在有多个询问,每个询问有一个距离值d,对于每一个询问,计算出有多少点 ...
随机推荐
- PMP(第六版)中的控制账户、规划包、工作包
PMP(第六版)中的控制账户.规划包.工作包 控制账户是一个管理控制点,在该控制点上,把范围.预算和进度加以整合,并与挣值比较,以测量绩效.控制账户拥有2个或以上的工作包,但每个工作包只与一个控制账户 ...
- [BZOJ29957] 楼房重建 - 线段树
2957: 楼房重建 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3294 Solved: 1554[Submit][Status][Discus ...
- Arduino学习笔记⑧ 红外通信
1.前言 红外通信是一种利用红外光编码进行数据传输的无线通信方式,在目前来说是使用非常广泛的.生活中常见电视遥控器,空调遥控器,DVD遥控器(现在估计是老古董了),均使用红外线遥控.使用红外线 ...
- 玩转OneNET物联网平台之MQTT服务⑦ —— 远程控制LED(数量无限制)+ Android App控制 优化第一版
授人以鱼不如授人以渔,目的不是为了教会你具体项目开发,而是学会学习的能力.希望大家分享给你周边需要的朋友或者同学,说不定大神成长之路有博哥的奠基石... QQ技术互动交流群:ESP8266&3 ...
- CountDownLatch和CycliBarrier介绍
一.CountDownLatch 它被用来同步一个或多个任务,强制他们等待其他任务完成,这就是闭锁. public CountDownLatch(int count) { if (count < ...
- Java基础(七)泛型数组列表ArrayList与枚举类Enum
一.泛型数组列表ArrayList 1.在Java中,ArrayList类可以解决运行时动态更改数组的问题.ArrayList使用起来有点像数组,但是在添加或删除元素时,具有自动调节数组容量的功能,而 ...
- CentOS 7 的root口令破解两种方法
破解CentOS7的root口令 方法一: 第一步: 启动时任意键暂停启动 按-e-键进入编辑模式 第二步: 1.将光标移动至蓝框处linux16开头的行,添加内核参数 rd.break 2.按ctr ...
- C# 8 - 其它新特性
其它关于C# 8和.NET Core 3.0新特性的文章: C# 8 - Nullable Reference Types 可空引用类型 C# 8 - 模式匹配 C# 8 - Range 和 Inde ...
- MyBatis的几个重要概念和工作流程
MyBatis 几个重要的概念 Mapper 配置: Mapper 配置可以使用基于 XML 的 Mapper 配置文件来实现,也可以使用基于 Java 注解的 MyBatis 注解来实现,甚至可以直 ...
- 【XSY2525】Maze 2017多校
Description 考虑一个 N×M 的网格,每个网格要么是空的,要么是障碍物.整个网格四周都是墙壁(即第1行和第n行,第1列和第m列都是墙壁),墙壁有且仅有两处开口,分别代表起点和终点.起点总是 ...