Kalman Filter、Extended Kalman Filter以及Unscented Kalman Filter介绍
模型定义
如上图所示,卡尔曼滤波(Kalman Filter)的基本模型和隐马尔可夫模型类似,不同的是隐马尔科夫模型考虑离散的状态空间,而卡尔曼滤波的状态空间以及观测空间都是连续的,并且都属于高斯分布,因此卡尔曼滤波又称为linear Gaussian Markov model,它的数学定义如下:$$\underbrace{s_{t}=C s_{t-1}+G h_{t}+\gamma_{t}}_{\text { latent process }}, \quad \underbrace{x_{t}=D s_{t}+\varepsilon_{t}}_{\text { observed process }}$$其中$h_t$表示控制向量(control vector),是已知量;$\gamma_{t} \sim N(0, Q)$表示状态误差,它包含了状态转换公式$C s_{t-1}+G h_{t}$中未考虑到的其它因素,是状态转换公式准确性的度量;$\varepsilon_{t} \sim N(0, V)$表示观测误差,是观测精度的度量。下面举一个简单的例子:
- 假设有一个二维空间上的物体位置的观测序列($x_{t} \in \mathbb{R}^{2}$),观测有一定误差;该物体的状态$s_t=[p_{t1},v_{t1},p_{t2},v_{t2}]^T$,其中$p_t$和$v_t$表示物体位置和速度,下标1和2表示方向;控制向量为$h_t=[a_{t1},a_{t2}]^T$,$a_t$表示加速度。由基本的物理公式可知$$s_{t}=\underbrace{\left[\begin{array}{cccc}{1} & {\Delta t} & {0} & {0} \\ {0} & {1} & {0} & {0} \\ {0} & {0} & {1} & {\Delta t} \\ {0} & {0} & {0} & {1}\end{array}\right]}_{C}s_{t-1}+\underbrace{\left[\begin{array}{cc} \frac{1}{2}(\Delta t)^{2} & {0} \\ {\Delta t} & {0} \\ {0} & \frac{1}{2}(\Delta t)^{2} \\ {0} & {\Delta t}\end{array}\right]}_{G}h_t+\gamma_t\text{ 以及 }x_{t}=\underbrace{\left[\begin{array}{cccc}{1} & {0} & {0} & {0} \\ {0} & {0} & {1} & {0}\end{array}\right]}_{D}s_{t}+\varepsilon_{t}$$
卡尔曼滤波的目标是已知观测序列$x_1,x_2,\cdots,x_t$,计算当前隐藏状态的分布函数,即$$s_{t}\left|s_{t-1} \sim N\left(C s_{t-1}+G h_{t}, Q\right), \quad x_{t}\right| s_{t} \sim N\left(D s_{t}, V\right)\quad
\Rightarrow\quad p\left(s_{t} | x_{1}, \dots, x_{t}\right);\quad 1\leq t \leq T$$注意除观测序列以外,矩阵$C,G,Q,D,V$以及控制向量$h_t$也是给定的。
模型求解
- 定义$S_t=(s_{t} | x_{1}, \ldots, x_{t})$,容易看出$S_t$满足高斯分布$N(\mu_{t}, \Sigma_{t})$,$\mu_t$以及$\Sigma_t$即为需要求解的量
- 为方便之后的计算,令$S_{t-1}=(s_{t-1} | x_{1}, \ldots, x_{t-1})=\underbrace{\mu_{t-1}}_\text{mean}+\Delta S_{t-1},\quad \Delta S_{t-1} \sim N(0,\Sigma_{t-1})$
- 定义$P_t= (s_{t} | x_{1}, \ldots, x_{t-1})$,有$P_t=CS_{t-1}+G h_{t}+\gamma_{t}$
- 为方便之后的计算,令$P_t=\underbrace{C\mu_{t-1}+Gh_t}_{\mu_{P_t}}+\underbrace{C\Delta S_{t-1}+\gamma_t}_{\Delta P_t}$
- 定义$O_t= (x_{t} | x_{1}, \ldots, x_{t-1})$,有$O_t=DP_{t}+\varepsilon_t$
- 为方便之后的计算,令$O_t=\underbrace{D(C\mu_{t-1}+Gh_t)}_{\mu_{O_t}}+\underbrace{DC\Delta S_{t-1}+D\gamma_t+\varepsilon_t}_{\Delta O_t}$
由上述定义可知 $$\left[\begin{array}{c} P_t \\ O_t \end{array}\right] \sim N\left(\left[\begin{array}{c} \mu_{P_t} \\ \mu_{O_t} \end{array}\right], \left[\begin{array}{cc} \Sigma_{PP} & \Sigma_{PO}\\ \Sigma_{PO}^T & \Sigma_{OO} \end{array}\right] \right)$$接下来计算协方差矩阵的这些项:
- $\Sigma_{PP}=\mathbb{E}[{\Delta P_t (\Delta P_t)^T}]=C\mathbb{E}[\Delta S_{t-1} (\Delta S_{t-1})^T]C^T+\mathbb{E}[\gamma_t\gamma_t^T]=C\Sigma_{t-1}C^T+Q$
- $\Sigma_{PO}=\mathbb{E}[{\Delta P_t (\Delta O_t)^T}]=C\mathbb{E}[\Delta S_{t-1} (\Delta S_{t-1})^T]C^TD^T+\mathbb{E}[\gamma_t\gamma_t^T]D^T=C\Sigma_{t-1}C^TD^T+QD^T$
- $\Sigma_{OO}=\mathbb{E}[{\Delta O_t (\Delta O_t)^T}]=DC\mathbb{E}[\Delta S_{t-1} (\Delta S_{t-1})^T]C^TD^T+D\mathbb{E}[\gamma_t\gamma_t^T]D^T+\mathbb{E}[\varepsilon_t\varepsilon_t^T]=DC\Sigma_{t-1}C^TD^T+DQD^T+V$
容易看出$S_t=(P_t | O_t)$,此外定义$$\hat{\mu}_t=\mu_{P_t}=C \mu_{t-1}+Gh_t,\text{ }\hat{\Sigma}_t=\Sigma_{PP}=C \Sigma_{t-1} C^{T}+Q\text{以及卡尔曼增益矩阵}K_t=\hat{\Sigma}_{t}D^T[D\hat{\Sigma}_{t}D^T+V]^{-1}$$由高斯分布的性质可知
- $\Sigma_t=\Sigma_{PP}-\Sigma_{PO}\Sigma_{OO}^{-1}\Sigma_{PO}^T=(I-K_tD)\hat{\Sigma}_t$
- $\mu_t=\mu_{P_t}+\Sigma_{PO}\Sigma_{OO}^{-1}(O_t-\mu_{O_t})=\hat{\mu}_t+K_t(x_t-D\hat{\mu}_t)$
上述求解过程可归纳为:
- 初始化$\mu_0$以及$\Sigma_0$
- 预测:$\hat{\mu}_t=C \mu_{t-1}+Gh_t$以及$\hat{\Sigma}_t=C \Sigma_{t-1} C^{T}+Q$
- 计算卡尔曼增益矩阵$K_t=\hat{\Sigma}_{t}D^T[D\hat{\Sigma}_{t}D^T+V]^{-1}$
- 更新:$\mu_t=\hat{\mu}_t+K_t(x_t-D\hat{\mu}_t)$以及$\Sigma_t=(I-K_tD)\hat{\Sigma}_t$
Extended Kalman Filter
在Extended Kalman Filter中,状态之间的转化以及状态向观测的转化是非线性的,即$$s_t=g(s_{t-1},h_t)+\gamma_t,\text{ }x_{t}=f(s_{t})+\varepsilon_{t};\text{ 其中}g,f\text{代表非线性函数}$$此时考虑使用泰勒公式将非线性函数近似为线性函数,延续上一部分的定义,有
- $P_t=g(S_{t-1},h_t)+\gamma_{t}=g(\mu_{t-1}+\delta S_{t-1},h_t)+\gamma_{t}=\underbrace{g(\mu_{t-1},h_t)}_{\mu_{P_t}(\text{i.e., }\hat{\mu}_t)}+\underbrace{J_g\Delta S_{t-1}+\gamma_{t}}_{\Delta P_t}$
- $O_t=h(P_t)+\varepsilon_t=f(\mu_{P_t}+\Delta P_t)+\varepsilon_t=f(\mu_{P_t})+J_f\Delta P_t+\varepsilon_t=\underbrace{f(\hat{\mu}_{t})}_{\mu_{O_t}}+\underbrace{J_fJ_g\Delta S_{t-1}+J_f\gamma_t+\varepsilon_t}_{\Delta O_t}$
其中$J_g$和$J_f$为Jacobian矩阵,假设状态为$m$维向量,观测为$n$维向量,并且$g(s,h)=[g_1(s,h),\cdots,g_m(s,h)]^T$以及$f(s)=[f_1(s),\cdots,f_n(s)]^T$,则有$$J_g=\left[\begin{array}{cccc}\frac{\partial g_1}{\partial \mu_{t-1,1}} & \frac{\partial \mu_1}{\partial s_{t-1,2}} & \cdots & \frac{\partial g_1}{\partial \mu_{t-1,m}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial g_m}{\partial \mu_{t-1,1}} & \frac{\partial g_m}{\partial \mu_{t-1,2}} & \cdots & \frac{\partial g_m}{\partial \mu_{t-1,m}}\end{array}\right], \text{ }J_f=\left[\begin{array}{cccc}\frac{\partial f_1}{\partial \hat{\mu}_{t,1}} & \frac{\partial f_1}{\partial \hat{\mu}_{t,2}} & \cdots & \frac{\partial f_1}{\partial \hat{\mu}_{t,m}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_n}{\partial \hat{\mu}_{t,1}} & \frac{\partial f_n}{\partial \hat{\mu}_{t,2}} & \cdots & \frac{\partial f_n}{\partial \hat{\mu}_{t,m}}\end{array}\right]$$容易看出Extended Kalman Filter的求解过程可归纳为:
- 初始化$\mu_0$以及$\Sigma_0$
- 预测:$\hat{\mu}_t=g(\mu_{t-1},h_t)$以及$\hat{\Sigma}_t=J_g \Sigma_{t-1} J_g^{T}+Q$
- 计算卡尔曼增益矩阵$K_t=\hat{\Sigma}_{t}J_f^T[J_f\hat{\Sigma}_{t}J_f^T+V]^{-1}$
- 更新:$\mu_t=\hat{\mu}_t+K_t[x_t-f(\hat{\mu}_t)]$以及$\Sigma_t=(I-K_tJ_f)\hat{\Sigma}_t$
Unscented Kalman Filter
Unscented Kalman Filter和Extended Kalman Filter的模型定义一样,只是具体求解方法不同。相对于Extended Kalman Filter使用泰勒公式近似非线性函数,Unscented Kalman Filter通过选取多个样本点(the sigma points)直接估计均值和方差。仍然延续之前的定义,假设状态为$m$维向量,从随机变量$S_{t-1}$中选取$2m+1$个样本点,记为矩阵$\mathcal{X}_{t-1}$($m$行$2m+1$列),选取方式为$$\mathcal{X}_{t-1}=\left[\begin{array}{ccc}\mu_{t-1} & \mu_{t-1}+\sqrt{(m+\lambda )\Sigma_{t-1}} & \mu_{t-1}-\sqrt{(m+\lambda )\Sigma_{t-1}} \end{array}\right]$$若将$\Sigma_{t-1}$进行Cholesky分解得到$LL^T$,则$\sqrt{\Sigma_{t-1}}=L$;或者对$\Sigma_{t-1}$进行特征值分解得到$U\Lambda U^T$(其中$\Lambda$为对角阵),则$\sqrt{\Sigma_{t-1}}=U\Lambda^{1/2}$。接下来对每个采样点分配权重:
- $\vec{w}_a=\left[\begin{array}{ccccc}\frac{\lambda}{m+\lambda} & \frac{1}{2(m+\lambda)} & \frac{1}{2(m+\lambda)} & \cdots & \frac{1}{2(m+\lambda)}\end{array}\right]$
- $\vec{w}_c=\left[\begin{array}{ccccc}\frac{\lambda}{m+\lambda}+(1-\alpha^2+\beta) & \frac{1}{2(m+\lambda)} & \frac{1}{2(m+\lambda)} & \cdots & \frac{1}{2(m+\lambda)}\end{array}\right]$
其中$\vec{w}_a$为求均值时的权重,$\vec{w}_c$为求协方差矩阵时的权重。针对一些参数的取值有以下建议:$$\alpha \in (0,1],\text{ }\beta=2,\text{ }\lambda=\alpha^2(m+\kappa)-m,\text{ }\kappa\geq 0$$将$\mathcal{X}_{t-1}$代入函数$g$可以得到$$\hat{\mathcal{X}}_{t}=\left[\begin{array}{cccc}g(\mathcal{X}_{t-1}^{[1]},h_t) & g(\mathcal{X}_{t-1}^{[2]},h_t) & \cdots & g(\mathcal{X}_{t-1}^{[2m+1]},h_t)\end{array}\right]$$其中上标表示矩阵的列数,由$\hat{\mathcal{X}}_{t}$可以估计出$\hat{\mu}_t$以及$\hat{\Sigma}_t$,接下来可以通过两种方式得到观测的采样点$\mathcal{Z}_t$:
- 直接通过$\hat{\mathcal{X}}_{t}$进行计算,即$$\mathcal{Z}_{t}=\left[\begin{array}{cccc}h(\hat{\mathcal{X}}_{t}^{[1]}) & h(\hat{\mathcal{X}}_{t}^{[2]}) & \cdots & h(\hat{\mathcal{X}}_{t}^{[2m+1]}) \end{array}\right]$$
- 通过得到的$\hat{\mu}_t$以及$\hat{\Sigma}_t$重新采样,有公式$$\hat{\mathcal{X}}_{t}^*=\left[\begin{array}{ccc}\hat{\mu}_{t} & \hat{\mu}_{t}+\sqrt{(m+\lambda )\hat{\Sigma}_{t}} & \hat{\mu}_{t}-\sqrt{(m+\lambda )\hat{\Sigma}_{t}} \end{array}\right]$$然后计算过程同第一种方式,即$$\mathcal{Z}_{t}=\left[\begin{array}{cccc}h(\hat{\mathcal{X}}_{t}^{*[1]}) & h(\hat{\mathcal{X}}_{t}^{*[2]}) & \cdots & h(\hat{\mathcal{X}}_{t}^{*[2m+1]}) \end{array}\right]$$
最后估计观测的均值和协方差矩阵,进而得到最终的结果,Unscented Kalman Filter的求解过程可归纳为:
- 初始化$\mu_0$以及$\Sigma_0$
- 预测:$\hat{\mu}_t=\sum_{j=1}^{2m+1}w_{aj}\hat{\mathcal{X}}_{t}^{[j]}$以及$\hat{\Sigma}_t=\sum_{j=1}^{2m+1}w_{cj}(\hat{\mathcal{X}}_{t}^{[j]}-\hat{\mu}_t)(\hat{\mathcal{X}}_{t}^{[j]}-\hat{\mu}_t)^T+Q$
- 计算$\mathcal{Z}_{t}$(从上述两种方式中选择一种),得到$\mu_{O_t}=\sum_{j=1}^{2m+1}w_{aj}\mathcal{Z}_{t}^{[j]}$以及$\Sigma_{OO}=\sum_{j=1}^{2m+1}w_{cj}({\mathcal{Z}}_{t}^{[j]}-\mu_{O_t})({\mathcal{Z}}_{t}^{[j]}-\mu_{O_t})^T+V$
- 计算$\Sigma_{PO}=\sum_{j=1}^{2m+1}w_{cj}(\hat{\mathcal{X}}_{t}^{[j]}-\hat{\mu}_{t})({\mathcal{Z}}_{t}^{[j]}-\mu_{O_t})^T$,注意若使用第二种方式计算$\mathcal{Z}$,需将公式中的$\hat{\mathcal{X}}_{t}$替换为$\hat{\mathcal{X}}_{t}^*$
- 计算卡尔曼增益矩阵$K_t=\Sigma_{PO}\Sigma_{OO}^{-1}$
- 更新:$\mu_t=\hat{\mu}_t+K_t[x_t-\mu_{O_t}]$以及$\Sigma_t=\hat{\Sigma}_t-\Sigma_{PO}\Sigma_{OO}^{-1}\Sigma_{PO}^T=\hat{\Sigma}_t-K_t\Sigma_{OO}K_t^T$
Kalman Filter、Extended Kalman Filter以及Unscented Kalman Filter介绍的更多相关文章
- 泡泡一分钟:Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter
张宁 Robust Attitude Estimation Using an Adaptive Unscented Kalman Filter 使用自适应无味卡尔曼滤波器进行姿态估计链接:https: ...
- 【转载】Servlet Filter(过滤器)、Filter是如何实现拦截的、Filter开发入门
Servlet Filter(过滤器).Filter是如何实现拦截的.Filter开发入门 Filter简介 Filter也称之为过滤器,它是Servlet技术中最激动人心的技术,WEB开发人员通过F ...
- spring-cloud-Zuul学习(三)【中级篇】--Filter链 工作原理与Zuul原生Filter【重新定义spring cloud实践】
这里开始记录zuul中级进阶内容.前面说过了,zuul主要是一层一层的Filter过滤器组成,并且Zuul的逻辑引擎与Filter可用其他基于JVM的语言编写,比如:Groovy. 工作原理 Zuul ...
- SpringBoot2.x过滤器Filter和使用Servlet3.0配置自定义Filter实战
补充:SpringBoot启动日志 1.深入SpringBoot2.x过滤器Filter和使用Servlet3.0配置自定义Filter实战(核心知识) 简介:讲解SpringBoot里面Filter ...
- Servlet Filter(过滤器)、Filter是如何实现拦截的、Filter开发入门
Servlet Filter(过滤器).Filter是如何实现拦截的.Filter开发入门 Filter简介 Filter也称之为过滤器,它是Servlet技术中最激动人心的技术,WEB开发人员通过F ...
- AngularJS filter:search 是如何匹配的 ng-repeat filter:search ,filter:{$:search},只取repeat的item的value 不含label
1. filter可以接收参数,参数用 : 进行分割,如下: {{ expression | filter:argument1:argument2:... }} 2. filter参数是 对象 ...
- java.lang.IllegalStateException: class utils.filter.ContentFilter is not a javax.servlet.Filter
1.错误描写叙述 2016-01-12 11:27:01.787:WARN:oejuc.AbstractLifeCycle:FAILED ContentFilter: java.lang.Illega ...
- org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter与org.apache.struts2.dispatcher.filter.StrutsPrepareAndExecuteFilter
欢迎和大家交流技术相关问题: 邮箱: jiangxinnju@163.com 博客园地址: http://www.cnblogs.com/jiangxinnju GitHub地址: https://g ...
- maven问题:org.springframewor.web.filter.CharacterEncodingFileter不能强转为javax.servlet.Filter
使用maven搭建ssm(SpringMVC.Spring .Mybatis)项目,启动时报: java.lang.ClassCastException:org.springframewor.web. ...
随机推荐
- jacoco生成覆盖率报告
操作步骤: 1.下载git上最新的代码到本地 git clone {代码地址} 2.在服务器上打出相关服务的jar包 1) 登上服务器,切换到目标服务所在路径: cd /xx/xx/xx/xx 2) ...
- 简述vue中父子组件是怎样相互传递值的(基础向)
前言 首先,你需要知道vue中父组件和子组件分别指的是什么? 父组件:vue的根实例——用new Vue()构造函数创建的vue实例(实例会有一个挂载点,挂载点里的所有内容可理解为父组件的内容) ...
- ReentrantLock源码的一点总结
ReentrantLock 是可重入锁,可重入锁的意思就是同一个线程可以重复获得该锁. 如何做到可重复获得该锁?计数器实现. 第一次加锁,cas比较是不是0,是0设置为1,并设置当前拥有锁的线程: 第 ...
- 关于pcl索引的使用
最近开始动手做实验,之前写了一个小实验利用到了PCL库中的索引: 现在在写利用PCL中的RegionGrowing类来分割生成面片,无论是迭代生成还是进行提取都需要用到pcl库中定义的索引, 虽然搞的 ...
- c++学习书籍推荐《Visual C++2008入门经典》下载
百度云及其他网盘下载地址:点我 <Visual C++2008入门经典>学习目标: 使用标准模板库(STL)来组织和操作本地C++程序中的数据 C++程序调试技术 构造Microsoft ...
- c++学习书籍推荐《超越C++标准库:Boost库导论》下载
<超越C++标准库Boost库导论>不仅介绍了Boost库的功能.使用方法及注意事项,而且还深入讨论了Boost库的设计理念.解决问题的思想和技巧以及待处理的问题.因此,本书是一本了解Bo ...
- WPF 入门笔记之布局
一.布局原则: 1. 不应显示的设定元素的尺寸,反而元素可以改变它的尺寸,并适应它们的内容 2. 不应使用平布的坐标,指定元素的位置. 3. 布局容器和它的子元素是共享可以使用的空间 4. 可以嵌套的 ...
- CDQZ集训DAY8 日记
又一次翻车…… 先提一句昨晚的事.昨天晚上身后一帮成都七中的人用十分戏谑的语气交出了达哥的名字,看着NOI2017的获奖名单,如果他们真的是在嘲笑的话,真的挺想上去干他们一顿的…… 上午考试第一题一脸 ...
- WordPress教程之页面、菜单、媒体库、高级定制
本系列教程链接: 怎么快速搭建一个WordPress网站 Wordpress教程之初识WordPress Wordpress教程之如何入门WordPress Wordpress教程之如何创建博客内容 ...
- java高并发系列 - 第14天:JUC中的LockSupport工具类,必备技能
这是java高并发系列第14篇文章. 本文主要内容: 讲解3种让线程等待和唤醒的方法,每种方法配合具体的示例 介绍LockSupport主要用法 对比3种方式,了解他们之间的区别 LockSuppor ...