动手学深度学习14- pytorch Dropout 实现与原理
针对深度学习中的过拟合问题,通常使用丢弃法(dropout),丢弃法有很多的变体,本文提高的丢弃法特指倒置丢弃法(inverted dorpout)。
方法
在会议多层感知机的图3.3描述了一个单隐藏层的多层感知机。其中输入个数为4,隐藏单元个数为5,且隐藏单元\(h_{i}(1,2,3,4,5)\)的计算表达式为
\(h_{i} = \varphi(x_{1}w_{1i}+x_{2}w_{2i}+x_{1}w_{3i}+x_{1}w_{4i}+b_{i})\)
这个里的\(\varphi\)是激活函数,\(x_{1},x_{2},x_{3},x_{4}是输入,隐层单元i的权重参数为w_{1i},w_{2i},w_{3i},w_{4i},偏置参数为b_{i}\),当对该隐藏层使用丢弃法是,该层的隐藏单元将有一定概率的被丢弃掉。设丢弃的概率为P,那么有p的概率hi会被清零,有1-p的概率hi会除以1-p做拉伸。丢弃概率是丢弃法的超参数。具体来说,设随机变量\(\xi为0和1的概率分别是p和1-p。使用丢弃法时,我们使用计算新的隐藏单元h_{i}^{'}\)
\(h_{i}^{'} = \frac{\xi_{i}}{1-p}h_{i}\)
由于$E(\xi_{i}) = 1-p \(,因此
\)E(\xi_{i}^{'}) = \frac{E(\xi_{i})}{1-p}h_{i} = h_{i}$
丢弃法不改变其输入的期望值。
如图3.5所示,其中,h2和h5被清零,这时输出值的计算不再依赖h2和h5,在反向传播时,与这两个隐藏单元相关的权重的梯度均为0。由于训练汇总隐藏层的神经元丢弃是随机的,即h1,h2,h3,h4,h5都可能被清零,输出层计算无法过度依赖h1,h2,h3..h5中的任一个,从而在训练模型时起到的正则化的作用,可以用来应付过拟合。在测试模型时,我们为了拿到更加确定的结果,一般不适用丢弃法。

从零开始实现
%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import sys
sys.path.append('..')
import d2lzh_pytorch as d2l
def dropout(X,drop_prob):
X = X.float()
assert 0<=drop_prob<=1
keep_prob = 1-drop_prob
if keep_prob==0:
return torch.torch.zeros_like(X)
mask = (torch.rand(X.shape)<keep_prob).float()
# 均匀分布的的张量,torch.rand(*sizes,out=None) → Tensor
# 返回一个张量,包含了从区间(0,1)的均匀分布中随机抽取的一组随机数。
#print(mask)
return mask * X / keep_prob
X = torch.arange(16).view(2,8)
dropout(X,0)
tensor([[ 0., 1., 2., 3., 4., 5., 6., 7.],
[ 8., 9., 10., 11., 12., 13., 14., 15.]])
dropout(X,0.5)
tensor([[ 0., 0., 0., 0., 0., 10., 0., 14.],
[16., 18., 0., 0., 0., 26., 28., 30.]])
dropout(X,1)
tensor([[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])
定义模型参数
num_inputs,num_outputs, num_hidden1,num_hidden2 = 784,10,256,256
W1 = torch.tensor(np.random.normal(0,0.01,size=(num_inputs,num_hidden1)),dtype =torch.float32,requires_grad=True )
b1 = torch.zeros(num_hidden1,requires_grad=True)
W2 = torch.tensor(np.random.normal(0,0.01,size=(num_hidden1,num_hidden2)),dtype =torch.float32,requires_grad=True )
b2 = torch.zeros(num_hidden2,requires_grad=True)
W3 = torch.tensor(np.random.normal(0,0.01,size=(num_hidden2,num_outputs)),dtype =torch.float32,requires_grad=True )
b3 = torch.zeros(num_outputs,requires_grad=True)
params = [W1,b1,W2,b2,W3,b3]
网络
drop_prob1,drop_prob2 = 0.2,0.5
def net(X,is_training=True):
X = X.view(-1,num_inputs)
H1 = (torch.matmul(X,W1)+b1).relu()
if is_training:
H1 = dropout(H1,drop_prob1)
H2 = (torch.matmul(H1,W2)+b2).relu()
if is_training:
H2 = dropout(H2,drop_prob2)
return torch.matmul(H2,W3)+b3
评估函数
def evaluate_accuracy(data_iter,net):
acc_sum ,n = 0.0,0
for X,y in data_iter:
if isinstance(net,torch.nn.Module): #如果是torch.nn里简洁的实现的模型
net.eval() # 评估模式,这时会关闭Dropout
acc_sum+=(net(X).argmax(dim=1)==y).float().sum().item()
net.train() # 改回训练模式
else: # 自己定义的模型
if ('is_training' in net.__code__.co_varnames): # 如果有训练这个参数
# 将is_training 设置为False
acc_sum +=(net(X,is_training=False).argmax(dim=1)==y).float().sum().item()
else:
acc_sum+=(net(X),argmax(dim=1)==y).float().sum().item()
n+= y.shape[0]
return acc_sum/n
优化方法
def sgd(params,lr,batch_size):
for param in params:
# param.data -=lr* param.grad/batch_size
param.data-= lr* param.grad # 计算loss使用的是pytorch的交叉熵
# 这个梯度可以不用除以batch_size,pytorch 在计算loss的时候已经除过一次了,
定义损失函数
loss = torch.nn.CrossEntropyLoss()
数据提取与训练评估
num_epochs,lr,batch_size=15,0.3,256
batch_size = 256
train_iter,test_iter = d2l.get_fahsion_mnist(batch_size)
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
params=None, lr=None, optimizer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y).sum()
# 梯度清零
if optimizer is not None:
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward()
if optimizer is None:
sgd(params, lr, batch_size)
else:
optimizer.step() # “softmax回归的简洁实现”一节将用到
train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,params,lr)
epoch 1, loss 0.0049, train acc 0.513, test acc 0.693
epoch 2, loss 0.0024, train acc 0.776, test acc 0.781
epoch 3, loss 0.0020, train acc 0.818, test acc 0.780
epoch 4, loss 0.0018, train acc 0.835, test acc 0.846
epoch 5, loss 0.0017, train acc 0.846, test acc 0.843
epoch 6, loss 0.0016, train acc 0.855, test acc 0.843
epoch 7, loss 0.0015, train acc 0.861, test acc 0.843
epoch 8, loss 0.0015, train acc 0.863, test acc 0.855
epoch 9, loss 0.0014, train acc 0.870, test acc 0.861
epoch 10, loss 0.0014, train acc 0.872, test acc 0.845
epoch 11, loss 0.0013, train acc 0.874, test acc 0.853
epoch 12, loss 0.0013, train acc 0.878, test acc 0.848
epoch 13, loss 0.0013, train acc 0.880, test acc 0.859
epoch 14, loss 0.0013, train acc 0.882, test acc 0.858
epoch 15, loss 0.0012, train acc 0.885, test acc 0.863
pytorch简洁实现
net = nn.Sequential(
d2l.FlattenLayer(),
nn.Linear(num_inputs,num_hidden1),
nn.ReLU(),
nn.Dropout(drop_prob1),
nn.Linear(num_hidden1,num_hidden2),
nn.ReLU(),
nn.Dropout(drop_prob2),
nn.Linear(num_hidden2,num_outputs)
)
for param in net.parameters():
nn.init.normal_(param,mean=0,std=0.01)
optimizer = torch.optim.SGD(net.parameters(),lr=0.3)
train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,optimizer)
epoch 1, loss 0.0048, train acc 0.525, test acc 0.725
epoch 2, loss 0.0024, train acc 0.779, test acc 0.787
epoch 3, loss 0.0020, train acc 0.818, test acc 0.771
epoch 4, loss 0.0018, train acc 0.836, test acc 0.834
epoch 5, loss 0.0017, train acc 0.847, test acc 0.848
epoch 6, loss 0.0016, train acc 0.855, test acc 0.855
epoch 7, loss 0.0015, train acc 0.859, test acc 0.850
epoch 8, loss 0.0014, train acc 0.863, test acc 0.853
epoch 9, loss 0.0014, train acc 0.868, test acc 0.848
epoch 10, loss 0.0014, train acc 0.872, test acc 0.837
epoch 11, loss 0.0013, train acc 0.876, test acc 0.849
epoch 12, loss 0.0013, train acc 0.879, test acc 0.872
epoch 13, loss 0.0013, train acc 0.880, test acc 0.847
epoch 14, loss 0.0013, train acc 0.883, test acc 0.862
epoch 15, loss 0.0012, train acc 0.886, test acc 0.865
小结
- 可以使用Dropout应对过拟合
- 丢弃法只能在训练模型时使用
动手学深度学习14- pytorch Dropout 实现与原理的更多相关文章
- 小白学习之pytorch框架(2)-动手学深度学习(begin-random.shuffle()、torch.index_select()、nn.Module、nn.Sequential())
在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比 ...
- 对比《动手学深度学习》 PDF代码+《神经网络与深度学习 》PDF
随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点.AlphaGo背后的工作原理"深度学习"也跳入大众的视野.什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中 ...
- 【动手学深度学习】Jupyter notebook中 import mxnet出错
问题描述 打开d2l-zh目录,使用jupyter notebook打开文件运行,import mxnet 出现无法导入mxnet模块的问题, 但是命令行运行是可以导入mxnet模块的. 原因: 激活 ...
- 动手学深度学习9-多层感知机pytorch
多层感知机 隐藏层 激活函数 小结 多层感知机 之前已经介绍过了线性回归和softmax回归在内的单层神经网络,然后深度学习主要学习多层模型,后续将以多层感知机(multilayer percetro ...
- 动手学深度学习6-认识Fashion_MNIST图像数据集
获取数据集 读取小批量样本 小结 本节将使用torchvision包,它是服务于pytorch深度学习框架的,主要用来构建计算机视觉模型. torchvision主要由以下几个部分构成: torchv ...
- 动手学深度学习1- pytorch初学
pytorch 初学 Tensors 创建空的tensor 创建随机的一个随机数矩阵 创建0元素的矩阵 直接从已经数据创建tensor 创建新的矩阵 计算操作 加法操作 转化形状 tensor 与nu ...
- 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型
目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...
- 动手学深度学习4-线性回归的pytorch简洁实现
导入同样导入之前的包或者模块 生成数据集 通过pytorch读取数据 定义模型 初始化模型 定义损失函数 定义优化算法 训练模型 小结 本节利用pytorch中的模块,生成一个更加简洁的代码来实现同样 ...
- 动手学深度学习11- 多层感知机pytorch简洁实现
多层感知机的简洁实现 定义模型 读取数据并训练数据 损失函数 定义优化算法 小结 多层感知机的简洁实现 import torch from torch import nn from torch.nn ...
随机推荐
- PHP面试题大全(值得收藏)
PHP进阶.面试:文档.视频资源点击免费获取 一 .PHP基础部分 1.PHP语言的一大优势是跨平台,什么是跨平台? PHP的运行环境最优搭配为Apache+MySQL+PHP,此运行环境可以在不同操 ...
- 【Linux命令】工作目录切换命令(pwd,cd,ls)
目录 pwd显示当前的工作路径 cd切换工作目录 ls显示目录中文件信息 一.pwd命令 pwd命令用于显示当前的工作路径. 格式: pwd [选项] 参数: -L,--logical,显示当前的路径 ...
- pixijs shader 案例
pixijs shader 案例 const app = new PIXI.Application({ transparent: true }); document.body.appendChild( ...
- Asp.net ------ 开发web 网站
HTML文件变成可以动态界面,经常会变成后缀有: 使用 .NET 开发的展示界面后缀是 .aspx 使用java 开发的展示界面后缀是 .jsp 使用php 开发的展示界面后缀是 .php 本 ...
- wcharczuk/go-chart图表上使用中文字体
https://github.com/wcharczuk/go-chart/ 默认使用的字体是 roboto.Roboto,不支持中文. // GetDefaultFont returns the ...
- js-xlsx 实现前端 Excel 导出(支持多 sheet)
之前写文章介绍了使用 js-xlsx 实现导入 excel 的功能,现在再介绍一下如何使用 js-xlsx 进行 excel 导出. [实现步骤] 1. 首先安装依赖 npm install xlsx ...
- Java开发桌面程序学习(二)————fxml布局与控件学习
JavaFx项目 新建完项目,我们的项目有三个文件 Main.java 程序入口类,载入界面并显示 Controller.java 事件处理,与fxml绑定 Sample.fxml 界面 sample ...
- Python绘图还在用Matplotlib?out了 !发现一款手绘可视化神器!
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. GitHub 地址:https://github.com/chenjian ...
- centos 7 搭建vsftp
一.FTP简介 1.ftp 概述 FTP:(file transfer protocol文件传输协议) ...
- DevExpress的下拉框控件ComboBoxEdit控件的使用
场景 Winform控件-DevExpress18下载安装注册以及在VS中使用: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1 ...