针对深度学习中的过拟合问题,通常使用丢弃法(dropout),丢弃法有很多的变体,本文提高的丢弃法特指倒置丢弃法(inverted dorpout)。

方法

在会议多层感知机的图3.3描述了一个单隐藏层的多层感知机。其中输入个数为4,隐藏单元个数为5,且隐藏单元\(h_{i}(1,2,3,4,5)\)的计算表达式为

\(h_{i} = \varphi(x_{1}w_{1i}+x_{2}w_{2i}+x_{1}w_{3i}+x_{1}w_{4i}+b_{i})\)

这个里的\(\varphi\)是激活函数,\(x_{1},x_{2},x_{3},x_{4}是输入,隐层单元i的权重参数为w_{1i},w_{2i},w_{3i},w_{4i},偏置参数为b_{i}\),当对该隐藏层使用丢弃法是,该层的隐藏单元将有一定概率的被丢弃掉。设丢弃的概率为P,那么有p的概率hi会被清零,有1-p的概率hi会除以1-p做拉伸。丢弃概率是丢弃法的超参数。具体来说,设随机变量\(\xi为0和1的概率分别是p和1-p。使用丢弃法时,我们使用计算新的隐藏单元h_{i}^{'}\)

\(h_{i}^{'} = \frac{\xi_{i}}{1-p}h_{i}\)

由于$E(\xi_{i}) = 1-p \(,因此
\)E(\xi_{i}^{'}) = \frac{E(\xi_{i})}{1-p}h_{i} = h_{i}$

丢弃法不改变其输入的期望值。

如图3.5所示,其中,h2和h5被清零,这时输出值的计算不再依赖h2和h5,在反向传播时,与这两个隐藏单元相关的权重的梯度均为0。由于训练汇总隐藏层的神经元丢弃是随机的,即h1,h2,h3,h4,h5都可能被清零,输出层计算无法过度依赖h1,h2,h3..h5中的任一个,从而在训练模型时起到的正则化的作用,可以用来应付过拟合。在测试模型时,我们为了拿到更加确定的结果,一般不适用丢弃法。

从零开始实现

%matplotlib inline
import torch
import torch.nn as nn
import numpy as np
import sys
sys.path.append('..')
import d2lzh_pytorch as d2l
def dropout(X,drop_prob):
X = X.float()
assert 0<=drop_prob<=1
keep_prob = 1-drop_prob
if keep_prob==0:
return torch.torch.zeros_like(X)
mask = (torch.rand(X.shape)<keep_prob).float()
# 均匀分布的的张量,torch.rand(*sizes,out=None) → Tensor
# 返回一个张量,包含了从区间(0,1)的均匀分布中随机抽取的一组随机数。
#print(mask)
return mask * X / keep_prob
X = torch.arange(16).view(2,8)
dropout(X,0)
tensor([[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.],
[ 8., 9., 10., 11., 12., 13., 14., 15.]])
dropout(X,0.5)
tensor([[ 0.,  0.,  0.,  0.,  0., 10.,  0., 14.],
[16., 18., 0., 0., 0., 26., 28., 30.]])
dropout(X,1)
tensor([[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])
定义模型参数
num_inputs,num_outputs, num_hidden1,num_hidden2 = 784,10,256,256
W1 = torch.tensor(np.random.normal(0,0.01,size=(num_inputs,num_hidden1)),dtype =torch.float32,requires_grad=True )
b1 = torch.zeros(num_hidden1,requires_grad=True) W2 = torch.tensor(np.random.normal(0,0.01,size=(num_hidden1,num_hidden2)),dtype =torch.float32,requires_grad=True )
b2 = torch.zeros(num_hidden2,requires_grad=True) W3 = torch.tensor(np.random.normal(0,0.01,size=(num_hidden2,num_outputs)),dtype =torch.float32,requires_grad=True )
b3 = torch.zeros(num_outputs,requires_grad=True) params = [W1,b1,W2,b2,W3,b3]
网络
drop_prob1,drop_prob2  = 0.2,0.5
def net(X,is_training=True):
X = X.view(-1,num_inputs)
H1 = (torch.matmul(X,W1)+b1).relu()
if is_training:
H1 = dropout(H1,drop_prob1) H2 = (torch.matmul(H1,W2)+b2).relu()
if is_training:
H2 = dropout(H2,drop_prob2)
return torch.matmul(H2,W3)+b3
评估函数
def evaluate_accuracy(data_iter,net):
acc_sum ,n = 0.0,0
for X,y in data_iter:
if isinstance(net,torch.nn.Module): #如果是torch.nn里简洁的实现的模型
net.eval() # 评估模式,这时会关闭Dropout
acc_sum+=(net(X).argmax(dim=1)==y).float().sum().item()
net.train() # 改回训练模式
else: # 自己定义的模型
if ('is_training' in net.__code__.co_varnames): # 如果有训练这个参数
# 将is_training 设置为False
acc_sum +=(net(X,is_training=False).argmax(dim=1)==y).float().sum().item()
else:
acc_sum+=(net(X),argmax(dim=1)==y).float().sum().item()
n+= y.shape[0]
return acc_sum/n
优化方法
def sgd(params,lr,batch_size):
for param in params:
# param.data -=lr* param.grad/batch_size
param.data-= lr* param.grad # 计算loss使用的是pytorch的交叉熵
# 这个梯度可以不用除以batch_size,pytorch 在计算loss的时候已经除过一次了,
定义损失函数
loss = torch.nn.CrossEntropyLoss()
数据提取与训练评估
num_epochs,lr,batch_size=15,0.3,256
batch_size = 256
train_iter,test_iter = d2l.get_fahsion_mnist(batch_size)
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
params=None, lr=None, optimizer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y).sum() # 梯度清零
if optimizer is not None:
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_() l.backward()
if optimizer is None:
sgd(params, lr, batch_size)
else:
optimizer.step() # “softmax回归的简洁实现”一节将用到 train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,params,lr)
epoch 1, loss 0.0049, train acc 0.513, test acc 0.693
epoch 2, loss 0.0024, train acc 0.776, test acc 0.781
epoch 3, loss 0.0020, train acc 0.818, test acc 0.780
epoch 4, loss 0.0018, train acc 0.835, test acc 0.846
epoch 5, loss 0.0017, train acc 0.846, test acc 0.843
epoch 6, loss 0.0016, train acc 0.855, test acc 0.843
epoch 7, loss 0.0015, train acc 0.861, test acc 0.843
epoch 8, loss 0.0015, train acc 0.863, test acc 0.855
epoch 9, loss 0.0014, train acc 0.870, test acc 0.861
epoch 10, loss 0.0014, train acc 0.872, test acc 0.845
epoch 11, loss 0.0013, train acc 0.874, test acc 0.853
epoch 12, loss 0.0013, train acc 0.878, test acc 0.848
epoch 13, loss 0.0013, train acc 0.880, test acc 0.859
epoch 14, loss 0.0013, train acc 0.882, test acc 0.858
epoch 15, loss 0.0012, train acc 0.885, test acc 0.863

pytorch简洁实现

net = nn.Sequential(
d2l.FlattenLayer(),
nn.Linear(num_inputs,num_hidden1),
nn.ReLU(),
nn.Dropout(drop_prob1),
nn.Linear(num_hidden1,num_hidden2),
nn.ReLU(),
nn.Dropout(drop_prob2),
nn.Linear(num_hidden2,num_outputs)
)
for param in net.parameters():
nn.init.normal_(param,mean=0,std=0.01)
optimizer = torch.optim.SGD(net.parameters(),lr=0.3)
train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,optimizer)
epoch 1, loss 0.0048, train acc 0.525, test acc 0.725
epoch 2, loss 0.0024, train acc 0.779, test acc 0.787
epoch 3, loss 0.0020, train acc 0.818, test acc 0.771
epoch 4, loss 0.0018, train acc 0.836, test acc 0.834
epoch 5, loss 0.0017, train acc 0.847, test acc 0.848
epoch 6, loss 0.0016, train acc 0.855, test acc 0.855
epoch 7, loss 0.0015, train acc 0.859, test acc 0.850
epoch 8, loss 0.0014, train acc 0.863, test acc 0.853
epoch 9, loss 0.0014, train acc 0.868, test acc 0.848
epoch 10, loss 0.0014, train acc 0.872, test acc 0.837
epoch 11, loss 0.0013, train acc 0.876, test acc 0.849
epoch 12, loss 0.0013, train acc 0.879, test acc 0.872
epoch 13, loss 0.0013, train acc 0.880, test acc 0.847
epoch 14, loss 0.0013, train acc 0.883, test acc 0.862
epoch 15, loss 0.0012, train acc 0.886, test acc 0.865
小结
  • 可以使用Dropout应对过拟合
  • 丢弃法只能在训练模型时使用

动手学深度学习14- pytorch Dropout 实现与原理的更多相关文章

  1. 小白学习之pytorch框架(2)-动手学深度学习(begin-random.shuffle()、torch.index_select()、nn.Module、nn.Sequential())

    在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比 ...

  2. 对比《动手学深度学习》 PDF代码+《神经网络与深度学习 》PDF

    随着AlphaGo与李世石大战的落幕,人工智能成为话题焦点.AlphaGo背后的工作原理"深度学习"也跳入大众的视野.什么是深度学习,什么是神经网络,为何一段程序在精密的围棋大赛中 ...

  3. 【动手学深度学习】Jupyter notebook中 import mxnet出错

    问题描述 打开d2l-zh目录,使用jupyter notebook打开文件运行,import mxnet 出现无法导入mxnet模块的问题, 但是命令行运行是可以导入mxnet模块的. 原因: 激活 ...

  4. 动手学深度学习9-多层感知机pytorch

    多层感知机 隐藏层 激活函数 小结 多层感知机 之前已经介绍过了线性回归和softmax回归在内的单层神经网络,然后深度学习主要学习多层模型,后续将以多层感知机(multilayer percetro ...

  5. 动手学深度学习6-认识Fashion_MNIST图像数据集

    获取数据集 读取小批量样本 小结 本节将使用torchvision包,它是服务于pytorch深度学习框架的,主要用来构建计算机视觉模型. torchvision主要由以下几个部分构成: torchv ...

  6. 动手学深度学习1- pytorch初学

    pytorch 初学 Tensors 创建空的tensor 创建随机的一个随机数矩阵 创建0元素的矩阵 直接从已经数据创建tensor 创建新的矩阵 计算操作 加法操作 转化形状 tensor 与nu ...

  7. 《动手学深度学习》系列笔记—— 1.2 Softmax回归与分类模型

    目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参 ...

  8. 动手学深度学习4-线性回归的pytorch简洁实现

    导入同样导入之前的包或者模块 生成数据集 通过pytorch读取数据 定义模型 初始化模型 定义损失函数 定义优化算法 训练模型 小结 本节利用pytorch中的模块,生成一个更加简洁的代码来实现同样 ...

  9. 动手学深度学习11- 多层感知机pytorch简洁实现

    多层感知机的简洁实现 定义模型 读取数据并训练数据 损失函数 定义优化算法 小结 多层感知机的简洁实现 import torch from torch import nn from torch.nn ...

随机推荐

  1. 【Linux命令】setterm命令修改虚拟机颜色显示(目录及背景颜色)

    VMware设置目录及颜色显示 进入linux界面,默认背景为黑色,字体为白色 一.setterm命令 setterm向终端写一个字符串到标准输出,调用终端的特定功能.在虚拟终端上使用,将会改变虚拟终 ...

  2. git 创建分支 提交到远程分支

    git 创建分支 并 提交到远程分支 git branch 0.可以通过git branch -r 命令查看远端库的分支情况 1,从已有的分支创建新的分支(如从master分支),创建一个dev分支 ...

  3. 记一次feign的问题排查(短路、线程池、队列)

    https://www.jianshu.com/p/f7fb59f43485 昨天开了一百个线程采用feign去请求第三方项目,结果报错,出现了短路,大概是下面这样的.(feign整合了hystrix ...

  4. C# MediaPlayer

    using System.Windows.Media; using Newtonsoft.Json; using System.ComponentModel; namespace ConsoleApp ...

  5. Razor_02 第一个应用程序+Model+EF 添加

    第一个应用程序+Model+EF 添加 小试牛刀 今天 也试了试 边说边写,但是 有时候 编辑器不给力,或者网路不给力,倒是浪费大家时间,所以今天录制完了就裁切了 部分视频,如果有不清楚的地方,可以留 ...

  6. 抖音美女千千万,想用Python爬爬看

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 星安果.AirPython PS:如有需要Python学习资料的小伙 ...

  7. Vue中v-on的指令以及一些其他指令

    1.v-on的基本使用 <div id="app"> <!-- 使用事件绑定的简写形式 --> <input type="button&qu ...

  8. nikto---基本使用

    目录 一:基本使用 二:调节扫描过程 三:命令行选项 四:配置文件 注意:使用版本:Nikto v2.1.6 功能:Web服务器评估工具,目的在于查找任何类型的Web服务器的各种默认和不安全的文件,配 ...

  9. 易优CMS:关于assign你知道多少

    [基础用法] 名称:assign 功能:模板文件中定义变量,可在其他标签里使用该变量 语法: {eyou:assign name='typeid' value='5' /} 文件: 无 参数: nam ...

  10. HTML中引用CSS的几种方法

    HTML中引用CSS的方法主要有 行内样式 内嵌式 链接式 导入样式 行内样式 指写在标签里的Style元素的值 <p style="color: #FF0000;"> ...