发际线堪忧的小 Q,为了守住头发最后的尊严,深入分析了几十款防脱洗发水的评价,最后综合选了一款他认为最完美的防脱洗发水。

一星期后,他没察觉到任何变化。

一个月后,他用卷尺量了量,发际线竟然后退了 0.5cm!难道防脱要经历一个物极必反的过程,先脱再长?小 Q 不甘心,决定继续坚持。

两个月后,小 Q 心如死灰,忍不住和小 Z 抱怨。

这句话,平地一惊雷,炸出了小 Q 惨痛的网购回忆。

他,屡屡冲着卖家秀而去,却屡屡化身买家秀而归。

说好的椰子!?

我想买两个杯子来着,怎么变成了一个!?

小 Q 曾经因为网购吃亏太多,而为自己的颜值和智商担忧。但经过小 Z 的点拨,他认定了一件事:活成卖家秀,并不是自身的问题,而是万恶的假评价误导了自己的消费决策。

为了自己,为了让更多的朋友免受误导,他和小 Z 一拍即合,决定用数据思维来鉴定刷单。

经过一番翻云覆雨,终于总结出了用数据鉴定刷单的两板斧。

第一板斧:评销比

购买——使用——评价是一个完整的购后链路。消费者在购买了产品之后,一定会使用,但评价则需要一定场景来触发。

比如这个产品超出预期,我要感谢卖家!或者这个产品在侮辱我的智商,我要骂街!

当然,还存在一部分为了刷积分而评价的人,不过正常情况下,主动评论的人占总人数的比重是维持在稳定水平的。

如果有通过大规模红包返现或其他人为手段刷的好评,在同样购买人数的前提下,参与评价的人大概率是高于正常的。

怎么衡量这个比例是否合理呢?这里,我们引入一个叫做评销比的指标。

评销比 = 单款产品总评论数 / 单款产品总销量 * 100,以此来衡量平均每卖出 100 单位的产品,对应着多少条评价。

接下来,我们导入爬取的脱敏真实数据(为了去重广告嫌疑脱的敏)来实践一下:

增加一列计算评销比:

看看评销比分布形态,数据在 20 左右分散开来,略微偏右:

从评销比分布图,可以看出在 40 处有二次下跌,我们暂且把 40(一般也可以尝试平均值)设置为一个筛选阈值,高于阈值的判定为有刷单嫌疑。

第一版斧挥过,12% 疑似刷单的产品应声倒下,小 Z 露出了欣慰的微笑。

小 Q 却眉头紧锁:“这个鉴定逻辑是有一定道理,但是,我买的那款洗发水竟然逃过了筛选!”

不要慌,我们还有第二板斧保驾护航。

第二板斧:内容重复度

第二板斧整个判别逻辑极其简单粗暴:对于一款产品,如果存在不同的用户,在不同的时间,评论了相同的内容,那妥妥的是刷啊!

直接上案例数据,我们爬取了小 Q 购买的那款防脱洗发水评价,共计1706条:

为了让鉴别更加科学,先换位思考:除极端情绪外,我们自己在评论时总会用“还行”、“一般般”、“刚收到,还没用”等短评来敷衍。这些短评非常容易重复,但也不能说是刷的评价。

so,我们在用重复度鉴别时,可以先预设一个评论长度作为筛选标准,比如只对超过 15 个字的评论进行重复度匹配:

长度筛选之后,正好还剩下 1200 条评价,下面开始正式匹配。大家如果想更精细,可以考虑用文本挖掘等高阶方法,在这里我们用最最最简单粗暴的文本排序:

前 6 条评价,有 3 个不同的客户,分别在 19 年的 10 月 16 日、24 日和 21 日发表了相同的内容,他们都受高考压力影响,脱发严重,每天房间、床铺、地上掉满他们的头发。

幸好!!!他们在秃顶前遇到了这款洗发水!用了几次不仅比之前掉的少,还新长出来了一些小碎发!

177 个字,洋洋洒洒,令人动容!

但这到底是偶然的巧合还是有组织刷的评价呢?我们不能这么简单下定论。

继续看一看,这些长篇大论一字不差的重复评论有多少条:

注:A、B、C 三条内容完全一样,则统计为 3 条重复评价

1200 条超过 15 个字的评价,有 378 条是虚伪的,占比高达 31.5%。

他们文风多变,除了“高考压力”,还有“为父分忧而买”、也有“被微博广告安利”、甚至有“担心被骗,用第二套才敢评价的”。

可谓情真而意切,感人而至深!

小 Z 看过评价,深深不能自拔,瞬间理解了小 Q 为什么被忽悠。

“你跺你也麻啊!”

幸好,以后有了这两板斧保驾护航,再也不用担心这些虚评假意了。

发际线堪忧的小 Q,为了守住头发最后的尊严,深入分析了几十款防脱洗发水的评价,最后综合选了一款他认为最完美的防脱洗发水。

一星期后,他没察觉到任何变化。

一个月后,他用卷尺量了量,发际线竟然后退了 0.5cm!难道防脱要经历一个物极必反的过程,先脱再长?小 Q 不甘心,决定继续坚持。

两个月后,小 Q 心如死灰,忍不住和小 Z 抱怨。

这句话,平地一惊雷,炸出了小 Q 惨痛的网购回忆。

他,屡屡冲着卖家秀而去,却屡屡化身买家秀而归。

说好的椰子!?

我想买两个杯子来着,怎么变成了一个!?

小 Q 曾经因为网购吃亏太多,而为自己的颜值和智商担忧。但经过小 Z 的点拨,他认定了一件事:活成卖家秀,并不是自身的问题,而是万恶的假评价误导了自己的消费决策。

为了自己,为了让更多的朋友免受误导,他和小 Z 一拍即合,决定用数据思维来鉴定刷单。

经过一番翻云覆雨,终于总结出了用数据鉴定刷单的两板斧。

第一板斧:评销比

购买——使用——评价是一个完整的购后链路。消费者在购买了产品之后,一定会使用,但评价则需要一定场景来触发。

比如这个产品超出预期,我要感谢卖家!或者这个产品在侮辱我的智商,我要骂街!

当然,还存在一部分为了刷积分而评价的人,不过正常情况下,主动评论的人占总人数的比重是维持在稳定水平的。

 

如果有通过大规模红包返现或其他人为手段刷的好评,在同样购买人数的前提下,参与评价的人大概率是高于正常的。

怎么衡量这个比例是否合理呢?这里,我们引入一个叫做评销比的指标。

评销比 = 单款产品总评论数 / 单款产品总销量 * 100,以此来衡量平均每卖出 100 单位的产品,对应着多少条评价。

接下来,我们导入爬取的脱敏真实数据(为了去重广告嫌疑脱的敏)来实践一下:

增加一列计算评销比:

看看评销比分布形态,数据在 20 左右分散开来,略微偏右:

从评销比分布图,可以看出在 40 处有二次下跌,我们暂且把 40(一般也可以尝试平均值)设置为一个筛选阈值,高于阈值的判定为有刷单嫌疑。

第一版斧挥过,12% 疑似刷单的产品应声倒下,小 Z 露出了欣慰的微笑。

小 Q 却眉头紧锁:“这个鉴定逻辑是有一定道理,但是,我买的那款洗发水竟然逃过了筛选!”

不要慌,我们还有第二板斧保驾护航。

第二板斧:内容重复度

第二板斧整个判别逻辑极其简单粗暴:对于一款产品,如果存在不同的用户,在不同的时间,评论了相同的内容,那妥妥的是刷啊!

直接上案例数据,我们爬取了小 Q 购买的那款防脱洗发水评价,共计1706条:

为了让鉴别更加科学,先换位思考:除极端情绪外,我们自己在评论时总会用“还行”、“一般般”、“刚收到,还没用”等短评来敷衍。这些短评非常容易重复,但也不能说是刷的评价。

so,我们在用重复度鉴别时,可以先预设一个评论长度作为筛选标准,比如只对超过 15 个字的评论进行重复度匹配:

长度筛选之后,正好还剩下 1200 条评价,下面开始正式匹配。大家如果想更精细,可以考虑用文本挖掘等高阶方法,在这里我们用最最最简单粗暴的文本排序:

前 6 条评价,有 3 个不同的客户,分别在 19 年的 10 月 16 日、24 日和 21 日发表了相同的内容,他们都受高考压力影响,脱发严重,每天房间、床铺、地上掉满他们的头发。

幸好!!!他们在秃顶前遇到了这款洗发水!用了几次不仅比之前掉的少,还新长出来了一些小碎发!

177 个字,洋洋洒洒,令人动容!

但这到底是偶然的巧合还是有组织刷的评价呢?我们不能这么简单下定论。

继续看一看,这些长篇大论一字不差的重复评论有多少条:

注:A、B、C 三条内容完全一样,则统计为 3 条重复评价

1200 条超过 15 个字的评价,有 378 条是虚伪的,占比高达 31.5%。

他们文风多变,除了“高考压力”,还有“为父分忧而买”、也有“被微博广告安利”、甚至有“担心被骗,用第二套才敢评价的”。

可谓情真而意切,感人而至深!

小 Z 看过评价,深深不能自拔,瞬间理解了小 Q 为什么被忽悠。

“你跺你也麻啊!”

幸好,以后有了这两板斧保驾护航,再也不用担心这些虚评假意了。

Python 教你识别淘宝刷单,买到称心如意的商品的更多相关文章

  1. 两个月淘宝刷单,连续死N次血泪史 (转)

    两个月淘宝刷单,连续死N次血泪史 派代网 2014/10/13 刷单 分享到:3 [思路网注] 看来是靠刷流量刷销量是行不通了,点击率与展现无法匹配,这是致命的!!那么,贵就贵点,直通车来吧!!再删宝 ...

  2. python:爬虫获取淘宝/天猫的商品信息

    [需求]输入关键字,如书包,可以搜索出对应商品的信息,包括:商品标题.商品链接.价格范围:且最终的商品信息需要符合:包邮.价格差不会超过某数值 #coding=utf-8 ""&q ...

  3. 用Python完成毫秒级抢单,助你秒杀淘宝大单

    目录: 引言 环境 需求分析&前期准备 淘宝购物流程回顾 秒杀的实现 代码梳理 总结 0 引言 年中购物618大狂欢开始了,各大电商又开始了大力度的折扣促销,我们的小胖又给大家谋了一波福利,淘 ...

  4. Python模拟简易版淘宝客服机器人

    对于用Python制作一个简易版的淘宝客服机器人,大概思路是:首先从数据库中用sql语句获取相关数据信息并将其封装成函数,然后定义机器问答的主体函数,对于问题的识别可以利用正则表达式来进行分析,结合现 ...

  5. 利用Python爬虫爬取淘宝商品做数据挖掘分析实战篇,超详细教程

    项目内容 本案例选择>> 商品类目:沙发: 数量:共100页  4400个商品: 筛选条件:天猫.销量从高到低.价格500元以上. 项目目的 1. 对商品标题进行文本分析 词云可视化 2. ...

  6. python(27) 抓取淘宝买家秀

    selenium 是Web应用测试工具,可以利用selenium和python,以及chromedriver等工具实现一些动态加密网站的抓取.本文利用这些工具抓取淘宝内衣评价买家秀图片. 准备工作 下 ...

  7. Appium+python自动化3-启动淘宝app

    前言 前面两篇环境已经搭建好了,接下来就是需要启动APP,如何启动app呢?首先要获取包名,然后获取launcherActivity.获取这两个关键东西的方法很多,这里就不一一多说,小伙伴们可以各显神 ...

  8. 【python】抄写爬淘宝已买到的宝贝的代码

    教程地址:http://cuiqingcai.com/1076.html 这一篇掌握的不好.虽然代码可以跑,但是里面的很多东西都一知半解.需要有空的时候系统整理. 原代码中的正则表达式已经失效了,我自 ...

  9. Python 002- 爬虫爬取淘宝上耳机的信息

    参照:https://mp.weixin.qq.com/s/gwzym3Za-qQAiEnVP2eYjQ 一般看源码就可以解决问题啦 #-*- coding:utf-8 -*- import re i ...

随机推荐

  1. Flume理论研究与实验

    一.理论研究 1.1 总览 Flume是一个分布式的可靠的日志收集系统,主要是用于从各种数据源收集.聚合并移动大批量的日志数据到存储系统:它本身具有许多故障转移和恢复机制,具有强大的容错能力:它使用下 ...

  2. Java堆的结构是什么样子的?什么是堆中的永久代(Perm Gen space)?

    JVM的堆是运行时数据区,所有类的实例和数组都是在堆上分配内存.它在JVM启动的时候被创建.对象所占的堆内存是由自动内存管理系统也就是垃圾收集器回收. 堆内存是由存活和死亡的对象组成的.存活的对象是应 ...

  3. java中小数点位数

    import java.math.BigDecimal;import java.text.DecimalFormat;import java.text.NumberFormat;import java ...

  4. 【Java必修课】图说Stream中的skip()和limit()方法及组合使用

    1 简介 本文将讲解Java 8 Stream中的两个方法:skip()和limit().这两个方法是Stream很常用的,不仅各自会被高频使用,还可以组合出现,并能实现一些小功能,如subList和 ...

  5. 聊聊 print 的前世今生

    本文原创并首发于公众号[Python猫],未经授权,请勿转载. 原文地址:https://mp.weixin.qq.com/s/NuzfuH_zCZzcrmSFR04NHw (一) 上周,我翻译了一篇 ...

  6. Python 库打包分发、setup.py 编写、混合 C 扩展打包的简易指南(转载)

    转载自:http://blog.konghy.cn/2018/04/29/setup-dot-py/ Python 有非常丰富的第三方库可以使用,很多开发者会向 pypi 上提交自己的 Python ...

  7. NetCore MemoryCache使用

    引用类库 1.Install-Package Microsoft.Extensions.Caching.Memory MemoryCacheOptions 缓存配置 1.ExpirationScanF ...

  8. Idea集成及使用svn插件

    1 idea集成svn 1.1 svn是什么? SVN是subversion的缩写,是一个开放源代码的版本控制系统,通过采用分支管理系统的高效管理,简而言之就是用于多个人共同开发同一个项目,实现共享资 ...

  9. IT兄弟连 HTML5教程 CSS3属性特效 渐变2 线性渐变实例

    3 线性渐变实例 一.颜色从顶部向底部渐变 制作从顶部到底部直线渐变有三种方法,第一种是起点参数不设置,因为起点参数的默认值为“top”:第二种方法起点参数设置为“top”:第三种起点参数使用“-90 ...

  10. Spring Boot Quartz 分布式集群任务调度实现

    Spring Boot Quartz 主要内容 Spring Scheduler 框架 Quartz 框架,功能强大,配置灵活 Quartz 集群 mysql 持久化定时任务脚本(tables_mys ...