Java 中的 Map 是一种键值对映射,又被称为符号表字典的数据结构,通常使用哈希表来实现,但也可使用二叉查找树红黑树实现。

  • HashMap 基于哈希表,但迭代时不是插入顺序
  • LinkedHashMap 扩展了 HashMap,维护了一个贯穿所有元素的双向链表,保证按插入顺序迭代
  • TreeMap 基于红黑树,保证有序性,迭代时按大小的排序顺序

这里就来分析下 TreeMap 的实现。基于红黑树,就意味着结点的增删改查都能在 O(lgn) 时间复杂度内完成,如果按树的中序遍历就能得到一个按 键-key 大小排序的序列。

在看本文之前,建议看一下《红黑树这个数据结构,让你又爱又恨?看了这篇,妥妥的征服它》对红黑树的分析,理解了红黑树,你会发现 TreeMap 如此简单。

基本结构

TreeMap 的继承结构如下,其中包含了一些关键字段和方法:

其中,相关字段的意义是:

  • Comparator - 不为空,那么就用它维持 key-键 的有序,否则使用 key-键 的自然顺序
  • size - 记录树中结点的个数
  • modCount - 记录树结构变化次数,用于迭代器的快速失败

另一个字段是 Entry<K,V> root ,它表示根结点,初始为空,树结点的结构定义如下:

static final class Entry<K,V> implements Map.Entry<K,V> {
K key;
V value;
Entry<K,V> left; // 左孩子结点
Entry<K,V> right; // 右孩子结点
Entry<K,V> parent; // 父结点
// 默认结点为黑色(在平衡操作时会先变成红色)
boolean color = BLACK; // 创建一个无孩子的,黑色的结点
Entry(K key, V value, Entry<K,V> parent) { ... }
...
}

TreeMap 是按照算法导论(CLR)的描述实现的,但略有不同,它没有使用隐形叶子结点 NIL,而是定义了一组访问方法来正确处理 NULL 叶子节点 的问题,用于避免在主算法中因检查空叶子结点引起的混乱,方法如下:

  • colorOf(Entry<K,V> p): 返回结点颜色,如果为空返回黑色
  • parentOf(Entry<K,V> p): 返回父结点的引用,根结点则返回 null
  • setColor(Entry<K,V> p, boolean c): 设置结点颜色
  • leftOf(Entry<K,V> p): 返回左孩子结点
  • rightOf(Entry<K,V> p): 返回右孩子结点
  • rotateLeft(Entry<K,V> p): 将结点 P 左旋转
  • rotateRight(Entry<K,V> p): 将结点 P 右旋转
  • fixAfterInsertion(Entry<K,V> x): 插入结点后的回调方法,重新平衡
  • fixAfterDeletion(Entry<K,V> x): 删除结点后的回调方法,重新平衡

这些方法基本上都能见名知意,其中有点绕的就是树旋转的代码,代码实现如下:

插入

结点的插入可能会打破红黑树的平衡,需要做旋转和颜色变换的调整。假设待插入结点为 NPN 的父结点,GN 的祖父结点,UN 的叔叔结点(即父结点的兄弟结点),那么红黑树有以下几种插入情况:

  1. N 是根结点,即红黑树的第一个结点
  2. N 的父结点(P)为黑色
  3. P红色的(不是根结点),它的兄弟结点 U 也是红色
  4. P红色,而 U黑色

    4.1 P 左(右)孩子 N 右(左)孩子

    4.2 P 左(右)孩子 N 左(右)孩子

以上情况的分析可查看本文开头的文章链接,现在来看下 TreeMap 的 put 方法的实现:

public V put(K key, V value) {
Entry<K,V> t = root;
// 情况 1 - 空树,直接插入作为根结点
if (t == null) {
compare(key, key); // type (and possibly null) check
root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
if (cpr != null) { // 使用 comparator 比较大小
do { // 根据 key 的大小找到插入位置
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0) t = t.left;
else if (cmp > 0) t = t.right;
else // 如果有相等的 key 直接设置 value 并返回
return t.setValue(value);
} while (t != null);
}
else {// 使用 key 的自然顺序
if (key == null) throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0) t = t.left;
else if (cmp > 0) t = t.right;
else return t.setValue(value);
} while (t != null);
} // 新建一个结点插入
Entry<K,V>e = new Entry<>(key, value, parent);
if (cmp < 0) parent.left = e;
else parent.right = e;
fixAfterInsertion(e);// 可能会打破平衡,调整树结构
size++;
modCount++;
return null;
}

put 方法比较简单,就是根据 key 的大小,递归的判断插入左子树还是右子树,比较复杂操作在于插入后重新平衡的调整,核心代码如下:

删除

结点的删除也可能会打破红黑树的平衡,相比插入它的情况更复杂,假设待删除结点为 M,如果有非叶子结点,称为 C,那么有两种比较简单的删除情况:

  1. M 为红色结点,那么它必是叶子结点,直接删除即可,因为如果它有一个黑色的非叶子结点,那么就违反了性质5,通过 M 向左或向右的路径黑色结点不等
  2. M 是黑色而 C 是红色,只需要让 C 替换到 M 的位置,并变成黑色即可,或者说交换 CM 的值,并删除 C(就是第一个简单的情况)

这两个情况,本质都是删除了一个红色结点,不影响整体平衡,比较复杂的是 MC 都是黑色的情况,需要找一个结点填补这个黑色空缺

结点 M删除后它的位置上就变成了 NIL 隐形结点,为了方便描述,这个结点记为 NP 表示 N 的父结点,S 表示 N 兄弟结点,S 如果存在左右孩子,分别使用 SLSR 表示,那么删除就有以下几种情况:

  1. N 是根结点 - 直接删除即可
  2. PS 红 - 交换 PS 的颜色,然后对 P 左旋转
  3. PS 黑 - 将 S 变成红色,问题递归到父结点处理
  4. PS 黑 - 将 S 变成红色,删除成功
  5. P 颜色任意 SSL 红 - 对 S 右旋转,并交换 SSL 的颜色,变成情况6
  6. P 颜色任意 S 黑,SR 红 - 对 P 左旋转,交换 PS 的颜色,并将 SR 变成黑色

针对这些情况,TreeMap 进行了实现:

public V remove(Object key) {
Entry<K,V> p = getEntry(key);// 查找结点
if (p == null) return null; V oldValue = p.value;
deleteEntry(p); // 删除结点
return oldValue;
}
private void deleteEntry(Entry<K,V> p) {
modCount++;
size--;
// 如果 p 有两个孩子结点,转成删除最多有一个孩子的结点的情况
// 这里查找的是 p 的后继结点,也就是右子树值最小的结点
if (p.left != null && p.right != null) {
Entry<K,V> s = successor(p); // 查找后继结点
// 复制后继结点的 key 和 value 到 p
p.key = s.key;
p.value = s.value;
p = s; // 将 p 指向这个右子树值最小的结点
} // p has 2 children // 此时删除的 p 要么是叶子结点,要么只有一个左或右孩子
Entry<K,V> replacement = (p.left != null ? p.left : p.right); if (replacement != null) { // 有孩子结点
// 有一个左或右孩子,使用这个孩子结点替换它的父结点 p
replacement.parent = p.parent;
if (p.parent == null) root = replacement;
else if (p == p.parent.left)
p.parent.left = replacement;
else
p.parent.right = replacement; // Null out links so they are OK to use by fixAfterDeletion.
// 删除结点 p,也就是断开所有的链接
p.left = p.right = p.parent = null; // Fix replacement. 如果删除的是黑色结点
if (p.color == BLACK)
fixAfterDeletion(replacement); // 平衡调整
} else if (p.parent == null) { // return if we are the only node.
root = null;// 情况1,删除后变成空树
} else {//No children. Use self as phantom replacement and unlink.
// 删除的是叶子结点,那么删除 p 就是用它的隐形 NIL 叶子结点替换
// 它,这里将它自己看做隐形的叶子结点
if (p.color == BLACK)
fixAfterDeletion(p); //如果是黑色,进行平衡调整
// 从树中移除 P
if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
}

deleteEntry 的逻辑就和二叉查找树一样,主要就是把删除任一结点的问题就简化成:删除一个最多只有一个孩子的结点的情况,并且所有的删除操作都在叶子结点完成。如果删除的是黑色结点,那么就视情况调整树重新达到平衡,具体代码如下:

查找

就像二分查找那样,TreeMap 也能在 ~lgN 次比较内结束查找,并且针对 键-key 提供了丰富的查询 API,

  • get(Object key) - 返回等于给定键的结点
  • floorEntry(K key) - 返回小于或等于给定键的结点中键最大的结点
  • ceilingEntry(K key) - 返回大于或等于给定键的结点中键最小的结点
  • higherEntry(K key) - 返回严格大于给定键的结点中键最小的结点
  • lowerEntry(K key) - 返回严格小于给定键的结点中键最大的结点

上面这些方法比较简单,可自行查看源码。另外,还有两个比较特殊的方法,它们用来查询指定结点在树中序遍历序列中的前驱和后继结点,在中序遍历序列中:

  • 前驱结点也就是左子树值最大的结点
  • 后继结点也就是右子树值最小的结点

遍历

遍历也是一个高频操作,在 Java 集合框架体系中,基本都是采用迭代器 Iterator 来实现,TreeMap 也是如此,它提供了对和对的迭代器。

TreeMap 迭代器最终的逻辑实现是在 PrivateEntryIterator 类中,默认按键的正序输出,它也提供了一个逆序输出的迭代器 DescendingKeyIterator。

具体代码不在贴出,比较简单,值得注意的就是上一节介绍的查找前驱和后继结点的两个方法,遍历常用 API 有:

  • entrySet() - 返回一个遍历所有结点的 Set 集合
  • keySet() - 返回一个遍历所有的 Set 集合
  • values() - 返回一个遍历所有的 Set 集合

小结

分析 TreeMap 的源码之前,一定要去分析红黑树的原理,然后在看它的源码,相信理论与实践相结合,掌握红黑树不在话下,TreeMap 也会用得游刃有余。

TreeMap 还能排序?分析下源码就明白了的更多相关文章

  1. erlang下lists模块sort(排序)方法源码解析(一)

    排序算法一直是各种语言最简单也是最复杂的算法,例如十大经典排序算法(动图演示)里面讲的那样 第一次看lists的sort方法的时候,蒙了,几百行的代码,我心想要这么复杂么(因为C语言的冒泡排序我记得不 ...

  2. erlang下lists模块sort(排序)方法源码解析(二)

    上接erlang下lists模块sort(排序)方法源码解析(一),到目前为止,list列表已经被分割成N个列表,而且每个列表的元素是有序的(从大到小) 下面我们重点来看看mergel和rmergel ...

  3. MapReduce中一次reduce方法的调用中key的值不断变化分析及源码解析

    摘要:mapreduce中执行reduce(KEYIN key, Iterable<VALUEIN> values, Context context),调用一次reduce方法,迭代val ...

  4. 在ConoHa上Centos7环境下源码安装部署LNMP

    本文记录了从源码,在Centos 7上手动部署LNMP环境的过程,为了方便以后对nginx和mariadb进行升级,这里采用yum的方式进行安装. 1.建立运行网站和数据库的用户和组 groupadd ...

  5. Linux内核(2) - 分析内核源码如何入手(上)

    透过现象看本质,兽兽们无非就是一些人体艺术展示.同样往本质里看过去,学习内核,就是学习内核的源代码,任何内核有关的书籍都是基于内核,而又不高于内核的. 既然要学习内核源码,就要经常对内核代码进行分析, ...

  6. CentOS 6.3下源码安装LAMP(Linux+Apache+Mysql+Php)环境【转载】

    本文转载自 园友David_Tang的博客,如有侵权请联系本人及时删除,原文地址: http://www.cnblogs.com/mchina/archive/2012/11/28/2778779.h ...

  7. Activiti架构分析及源码详解

    目录 Activiti架构分析及源码详解 引言 一.Activiti设计解析-架构&领域模型 1.1 架构 1.2 领域模型 二.Activiti设计解析-PVM执行树 2.1 核心理念 2. ...

  8. [源码分析] 从源码入手看 Flink Watermark 之传播过程

    [源码分析] 从源码入手看 Flink Watermark 之传播过程 0x00 摘要 本文将通过源码分析,带领大家熟悉Flink Watermark 之传播过程,顺便也可以对Flink整体逻辑有一个 ...

  9. 助力SpringBoot自动配置的条件注解ConditionalOnXXX分析--SpringBoot源码(三)

    注:该源码分析对应SpringBoot版本为2.1.0.RELEASE 1 前言 本篇接 如何分析SpringBoot源码模块及结构?--SpringBoot源码(二) 上一篇分析了SpringBoo ...

随机推荐

  1. Codility----PassingCars

    Task description A non-empty zero-indexed array A consisting of N integers is given. The consecutive ...

  2. SYN591-B型 转速表

       SYN591-B型 转速表 光电转速表数显转速表智能转速表使用说明视频链接: http://www.syn029.com/h-pd-249-0_310_44_-1.html 请将此链接复制到浏览 ...

  3. 【数据结构】31、hashmap=》resize 扩容,不测不知道,一测吓一跳

    来来来,今天就跟hashmap杠到底... 不要叫我杠精了,主要是还是被问到hashmap的时候,我并不能很清晰明了得告知这种数据结构到底是一个什么构造,里面细节并不了解 既然这样,我们就把他解析一波 ...

  4. 解决Nextcloud 无法删除目录

    1)进入维护模式 sudo -u www php /www/wwwroot/192.168.40.159/occ maintenance:mode --on 2)使用mysql命令行工具,在nextc ...

  5. 请给出linux中查看系统已经登录用户的命令?

    w命令 第一行:当前系统运行了多久和系统负载 谁正在远程登录系统并且在干什么 [root@martin ~]# w 11:30:33 up 4 days, 18:10, 2 users, load a ...

  6. 编译php扩展

    在php编译安装好的情况下php扩展编译 php的很多模块都是以php的扩展形式来进行的.所以在php安装好的环境下需要用到之前安装时没有编译安装的php扩展的时候,这个时候编译安装php扩展就显得尤 ...

  7. (持续更新)Qt3D 学习资源

    目录 一.前言 1.1 什么是Qt3D 1.2 Qt3D 的利与弊 利:原生支持 弊处:资料过少 二.学习建议 2.1 OpenGL 学习资料 2.2 Qt3D 资料 2.2.1 视频资料 2.2.4 ...

  8. .NET开发框架(四)-服务器IIS安装教程

    Windows Server 2012 R2 配置篇,包括服务器IIS安装.网络负载均衡器安装.ASP.NET Core 安装. 前三篇教程中,我们分享了框架的功能与视频演示介绍(文尾扫码 加入 框架 ...

  9. BFS(一):广度优先搜索的基本思想

    广度优先搜索BFS(Breadth First Search)也称为宽度优先搜索,它是一种先生成的结点先扩展的策略. 在广度优先搜索算法中,解答树上结点的扩展是按它们在树中的层次进行的.首先生成第一层 ...

  10. css实现超出文本溢出用省略号代替

    一.单行 实现单行文本的溢出显示省略号使用text-overflow:ellipsis属性,但需要配合使用另外两个属性使用才能达到效果. 如下: overflow:hidden; text-overf ...