AKAZE局部匹配

AKAZE局部匹配介绍
AOS 构造尺度空间
Hessian矩阵特征点检测
方向指定基于一阶微分图像
描述子生成 与SIFT、SUFR比较
更加稳定
非线性尺度空间
AKAZE速度更加快
比较新的算法,只有OpenCV新版本才可以用
#include <opencv2/opencv.hpp>
#include <iostream> using namespace cv;
using namespace std; int main(int argc, char** argv) {
Mat src = imread("D:/vcprojects/images/test.png", IMREAD_GRAYSCALE);
if (src.empty()) {
printf("could not load image...\n");
return -;
}
imshow("input image", src); // kaze detection
Ptr<AKAZE> detector = AKAZE::create();
vector<KeyPoint> keypoints;
double t1 = getTickCount();
detector->detect(src, keypoints, Mat());
double t2 = getTickCount();
double tkaze = * (t2 - t1) / getTickFrequency();
printf("KAZE Time consume(ms) : %f", tkaze); Mat keypointImg;
drawKeypoints(src, keypoints, keypointImg, Scalar::all(-), DrawMatchesFlags::DEFAULT);
imshow("kaze key points", keypointImg); waitKey();
return ;
}
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h> using namespace cv;
using namespace std; int main(int argc, char** argv) {
Mat img1 = imread("D:/vcprojects/images/box.png", IMREAD_GRAYSCALE);
Mat img2 = imread("D:/vcprojects/images/box_in_scene.png", IMREAD_GRAYSCALE);
if (img1.empty() || img2.empty()) {
printf("could not load images...\n");
return -;
}
imshow("box image", img1);
imshow("scene image", img2); // extract akaze features
Ptr<AKAZE> detector = AKAZE::create();
vector<KeyPoint> keypoints_obj;
vector<KeyPoint> keypoints_scene;
Mat descriptor_obj, descriptor_scene;
double t1 = getTickCount();
detector->detectAndCompute(img1, Mat(), keypoints_obj, descriptor_obj);
detector->detectAndCompute(img2, Mat(), keypoints_scene, descriptor_scene);
double t2 = getTickCount();
double tkaze = * (t2 - t1) / getTickFrequency();
printf("AKAZE Time consume(ms) : %f\n", tkaze); // matching
FlannBasedMatcher matcher(new flann::LshIndexParams(, , ));
//FlannBasedMatcher matcher;
vector<DMatch> matches;
matcher.match(descriptor_obj, descriptor_scene, matches); // draw matches(key points)
Mat akazeMatchesImg;
drawMatches(img1, keypoints_obj, img2, keypoints_scene, matches, akazeMatchesImg);
imshow("akaze match result", akazeMatchesImg); /*
vector<DMatch> goodMatches;
double minDist = 100000, maxDist = 0;
for (int i = 0; i < descriptor_obj.rows; i++) {
double dist = matches[i].distance;
if (dist < minDist) {
minDist = dist;
}
if (dist > maxDist) {
maxDist = dist;
}
}
printf("min distance : %f", minDist); for (int i = 0; i < descriptor_obj.rows; i++) {
double dist = matches[i].distance;
if (dist < max( 1.5*minDist, 0.02)) {
goodMatches.push_back(matches[i]);
}
} drawMatches(img1, keypoints_obj, img2, keypoints_scene, goodMatches, akazeMatchesImg, Scalar::all(-1),
Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
imshow("good match result", akazeMatchesImg);
*/ waitKey();
return ;
}

opencv::AKAZE检测与匹配的更多相关文章

  1. opencv::Brisk检测与匹配

    Brisk(Binary Robust Invariant Scalable Keypoints)特征介绍 构建尺度空间 特征点检测 FAST9-16寻找特征点 特征点定位 关键点描述子

  2. OpenCV绘制检测结果

    OpenCV绘制检测结果 opencv  rtcp  timestamp  一.介绍 由于在验证阶段,使用FPGA时我们的算法检测速度很慢,没法直接在主流上进行绘图,否则的话,主流就要等待算法很久才能 ...

  3. 使用Opencv中matchTemplate模板匹配方法跟踪移动目标

    模板匹配是一种在图像中定位目标的方法,通过把输入图像在实际图像上逐像素点滑动,计算特征相似性,以此来判断当前滑块图像所在位置是目标图像的概率. 在Opencv中,模板匹配定义了6种相似性对比方式: C ...

  4. opencv直线检测在c#、Android和ios下的实现方法

    opencv直线检测在c#.Android和ios下的实现方法 本文为作者原创,未经允许,不得转载 :原文由作者发表在博客园:http://www.cnblogs.com/panxiaochun/p/ ...

  5. OPENCV条形码检测与识别

    条形码是当前超市和部分工厂使用比较普遍的物品,产品标识技术,使用摄像头检测一张图片的条形码包含有两个步骤,第一是定位条形码的位置,定位之后剪切出条形码,并且识别出条形码对应的字符串,然后就可以调用网络 ...

  6. OpenCV矩形检测

    OpenCV矩形检测 需求:提取图像中的矩形,图像存在污染现象,即矩形区域不是完全规则的矩形. 思路一:轮廓法 OpenCV里提取目标轮廓的函数是findContours,它的输入图像是一幅二值图像, ...

  7. keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)

    引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节 ...

  8. OpenCV——KAZE、AKAZE特征检测、匹配与对象查找

      AKAZE是KAZE的加速版 特征点查找和绘制:把surf中的surf改成KAZE或AKAZE即可 #include <opencv2/opencv.hpp> #include < ...

  9. [opencv]KAZE、AKAZE特征检测、匹配与对象查找

    AkAZE是KAZE的加速版 与SIFT,SUFR比较: 1.更加稳定 2.非线性尺度空间 3.AKAZE速度更加快 4.比较新的算法,只有Opencv新的版本才可以用 AKAZE局部匹配介绍 1.A ...

随机推荐

  1. charles 重写工具/rewrite Srttings

    本文参考:charles 重写工具 rewrite Srttings 重写工具/rewrite Srttings and rewrite rule 功能:在通过charles时修改请求和响应 重写工具 ...

  2. 47 (OC)* OC反射机制

    Objective-C反射机制:是类似于Java的反射机制,这种动态机制可以让oc语言更加的灵活.这句话是对oc反射机制的初步认识,不过具体的怎么类似于java机制,怎么让oc更加的灵活,还得看下面的 ...

  3. java架构之路-(JVM优化与原理)JVM之G1回收器和常见参数配置

    过去的几天里,我把JVM内部的垃圾回收算法和垃圾回收器.还剩下最后一个G1回收器没有说,我们今天数一下G1回收器和常见的参数配置. G1回收器 G1 (Garbage-First)是一款面向服务器的垃 ...

  4. Elasticsearch(10) --- 内置分词器、中文分词器

    Elasticsearch(10) --- 内置分词器.中文分词器 这篇博客主要讲:分词器概念.ES内置分词器.ES中文分词器. 一.分词器概念 1.Analysis 和 Analyzer Analy ...

  5. RxSwift 中的调度器

    与 ReactiveCocoa 相比,Rx 的一大优势就是更丰富的并发模型.提到并发,就不得不提多线程.在 RxSwift 中,与线程对应的概念就是调度器,本文就调度器做些介绍,包括并发调度器.串行调 ...

  6. 【iOS 】把一些不太重要的任务放在空时执行

    -(void)idleNotificationMethod { } -(void)registerForIdleNotification { [[NSNotificationCenter defaul ...

  7. WordPress 文章目录插件 Easy Table of Contents 配置教程

    今天介绍一款目录插件,本站已经使用一段时间,感觉不错,实现效果可以看文章页右侧边栏有目录,点击目录内容会快速定位.推荐给大家. 一.安装Easy Table of Contents 插件主页搜索Eas ...

  8. npm install 时间很长解决方案

    国外镜像站很慢,所以我们可以更换为国内的镜像站 首先可以get命令查看registry npm congfig get registry 如果你没有变更果regustry你的结果应该会是这样的 也就是 ...

  9. 提交第一个spark作业到集群运行

    写在前面 接触spark有一段时间了,但是一直都没有真正意义上的在集群上面跑自己编写的代码.今天在本地使用scala编写一个简单的WordCount程序.然后,打包提交到集群上面跑一下... 在本地使 ...

  10. selenium自动化测试-浏览器基本操作

    webdriver 通过协议和接口发现DOM中的元素,并实现控制浏览器的行为,例如打开浏览器.控制浏览器大小. 浏览器刷新及浏览器前进.后退等,接下来介绍浏览器的一些基本操作. 1.启动浏览器 dri ...