opencv::AKAZE检测与匹配
AKAZE局部匹配 AKAZE局部匹配介绍
AOS 构造尺度空间
Hessian矩阵特征点检测
方向指定基于一阶微分图像
描述子生成 与SIFT、SUFR比较
更加稳定
非线性尺度空间
AKAZE速度更加快
比较新的算法,只有OpenCV新版本才可以用
#include <opencv2/opencv.hpp>
#include <iostream> using namespace cv;
using namespace std; int main(int argc, char** argv) {
Mat src = imread("D:/vcprojects/images/test.png", IMREAD_GRAYSCALE);
if (src.empty()) {
printf("could not load image...\n");
return -;
}
imshow("input image", src); // kaze detection
Ptr<AKAZE> detector = AKAZE::create();
vector<KeyPoint> keypoints;
double t1 = getTickCount();
detector->detect(src, keypoints, Mat());
double t2 = getTickCount();
double tkaze = * (t2 - t1) / getTickFrequency();
printf("KAZE Time consume(ms) : %f", tkaze); Mat keypointImg;
drawKeypoints(src, keypoints, keypointImg, Scalar::all(-), DrawMatchesFlags::DEFAULT);
imshow("kaze key points", keypointImg); waitKey();
return ;
}
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h> using namespace cv;
using namespace std; int main(int argc, char** argv) {
Mat img1 = imread("D:/vcprojects/images/box.png", IMREAD_GRAYSCALE);
Mat img2 = imread("D:/vcprojects/images/box_in_scene.png", IMREAD_GRAYSCALE);
if (img1.empty() || img2.empty()) {
printf("could not load images...\n");
return -;
}
imshow("box image", img1);
imshow("scene image", img2); // extract akaze features
Ptr<AKAZE> detector = AKAZE::create();
vector<KeyPoint> keypoints_obj;
vector<KeyPoint> keypoints_scene;
Mat descriptor_obj, descriptor_scene;
double t1 = getTickCount();
detector->detectAndCompute(img1, Mat(), keypoints_obj, descriptor_obj);
detector->detectAndCompute(img2, Mat(), keypoints_scene, descriptor_scene);
double t2 = getTickCount();
double tkaze = * (t2 - t1) / getTickFrequency();
printf("AKAZE Time consume(ms) : %f\n", tkaze); // matching
FlannBasedMatcher matcher(new flann::LshIndexParams(, , ));
//FlannBasedMatcher matcher;
vector<DMatch> matches;
matcher.match(descriptor_obj, descriptor_scene, matches); // draw matches(key points)
Mat akazeMatchesImg;
drawMatches(img1, keypoints_obj, img2, keypoints_scene, matches, akazeMatchesImg);
imshow("akaze match result", akazeMatchesImg); /*
vector<DMatch> goodMatches;
double minDist = 100000, maxDist = 0;
for (int i = 0; i < descriptor_obj.rows; i++) {
double dist = matches[i].distance;
if (dist < minDist) {
minDist = dist;
}
if (dist > maxDist) {
maxDist = dist;
}
}
printf("min distance : %f", minDist); for (int i = 0; i < descriptor_obj.rows; i++) {
double dist = matches[i].distance;
if (dist < max( 1.5*minDist, 0.02)) {
goodMatches.push_back(matches[i]);
}
} drawMatches(img1, keypoints_obj, img2, keypoints_scene, goodMatches, akazeMatchesImg, Scalar::all(-1),
Scalar::all(-1), vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
imshow("good match result", akazeMatchesImg);
*/ waitKey();
return ;
}
opencv::AKAZE检测与匹配的更多相关文章
- opencv::Brisk检测与匹配
Brisk(Binary Robust Invariant Scalable Keypoints)特征介绍 构建尺度空间 特征点检测 FAST9-16寻找特征点 特征点定位 关键点描述子
- OpenCV绘制检测结果
OpenCV绘制检测结果 opencv rtcp timestamp 一.介绍 由于在验证阶段,使用FPGA时我们的算法检测速度很慢,没法直接在主流上进行绘图,否则的话,主流就要等待算法很久才能 ...
- 使用Opencv中matchTemplate模板匹配方法跟踪移动目标
模板匹配是一种在图像中定位目标的方法,通过把输入图像在实际图像上逐像素点滑动,计算特征相似性,以此来判断当前滑块图像所在位置是目标图像的概率. 在Opencv中,模板匹配定义了6种相似性对比方式: C ...
- opencv直线检测在c#、Android和ios下的实现方法
opencv直线检测在c#.Android和ios下的实现方法 本文为作者原创,未经允许,不得转载 :原文由作者发表在博客园:http://www.cnblogs.com/panxiaochun/p/ ...
- OPENCV条形码检测与识别
条形码是当前超市和部分工厂使用比较普遍的物品,产品标识技术,使用摄像头检测一张图片的条形码包含有两个步骤,第一是定位条形码的位置,定位之后剪切出条形码,并且识别出条形码对应的字符串,然后就可以调用网络 ...
- OpenCV矩形检测
OpenCV矩形检测 需求:提取图像中的矩形,图像存在污染现象,即矩形区域不是完全规则的矩形. 思路一:轮廓法 OpenCV里提取目标轮廓的函数是findContours,它的输入图像是一幅二值图像, ...
- keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)
引自:http://blog.csdn.net/sinat_26917383/article/details/72885715 人脸识别热门,表情识别更加.但是表情识别很难,因为人脸的微表情很多,本节 ...
- OpenCV——KAZE、AKAZE特征检测、匹配与对象查找
AKAZE是KAZE的加速版 特征点查找和绘制:把surf中的surf改成KAZE或AKAZE即可 #include <opencv2/opencv.hpp> #include < ...
- [opencv]KAZE、AKAZE特征检测、匹配与对象查找
AkAZE是KAZE的加速版 与SIFT,SUFR比较: 1.更加稳定 2.非线性尺度空间 3.AKAZE速度更加快 4.比较新的算法,只有Opencv新的版本才可以用 AKAZE局部匹配介绍 1.A ...
随机推荐
- 安全性测试:OWASP ZAP 2.8 使用指南(二):ZAP基础操作
ZAP桌面应用 ZAP桌面应用由以下元素组成: 1. 菜单栏 – 提供多种自动化和手动工具的访问 2. 工具栏 – 提供快速访问最常用组件的用户接口 3. 树结构窗口 – 展示被测网站树结构和脚 ...
- Azure Application Insights REST API使用教程
本文是Azure Application Insights REST API的简单介绍,并会包含一个通过Python消费API的示例/小工具. 新加入的team中的一项工作是制作日常的运维报表,制作方 ...
- Android服务之混合方式开启服务
引言 前面介绍过了Android服务的两种开启方式:Start方式可以让服务在后台运行:bind方式能够调用到服务中的方法. 在实际的开发工作中,有很多需求是:既要在后台能够长期运行,又要在服务中操作 ...
- [C++] 重载new和delete——控制内存分配
1.new和delete表达式的工作机理 1)new表达式实际执行了三步 string *sp=new string("aaaa"); ];//string采用默认初 ...
- 从 HTTP/1 到 HTTP/2,以及即将到来的 HTTP/3
如今的生活中已经离不开互联网,智能家居.在线支付.网上购物都需要互联网的支持.互联网切切实实地给生活带来了诸多便利.有了互联网,我们可以呆在空调房里,一边刷着微博,一边等透心凉的西瓜送到手上,安安静静 ...
- Microsoft Visual C++ 14.0 is required,成功解决这个问题!
这个问题我向大家也不一定很好解决的,因为按照这个链接提示的打开,里面的t[mark][/mark]ools 页面早就已经不存在了,我也是看了网上各种各样的解决办法,解决起来是困难,这个提示的意思是缺少 ...
- 环境搭建-Hadoop集群搭建
环境搭建-Hadoop集群搭建 写在前面,前面我们快速搭建好了centos的集群环境,接下来,我们就来开始hadoop的集群的搭建工作 实验环境 Hadoop版本:CDH 5.7.0 这里,我想说一下 ...
- JS的运动1(从简单到复杂运动,从单一属性到多属性同时进行的运动过程分析)
js运动原理 运动基础 在js中,让一个元素动起来的最简单的方式,就是点击按钮,让元素移动.下面是一个简单的案例:(下面几个案例的的html和css都是采用这个为例) <!DOCTYPE htm ...
- 【Django】ESRTful APi
如何利用rest framework搭建Django API框架! 环境:win10 python3.6 思路步骤: 创建一个可以序列化的类 去数据库取数据交给序列化的类处理 把序列化的数据返回前 ...
- Hbase入门(三)——数据模型
Hbase最核心但也是最难理解的就是数据模型,由于与传统的关系型数据库不同,虽然Hbase也有表(Table),也有行(Row)和列(Column),但是与关系型数据库不同的是Hbase有一个列族(C ...