Description

  在某国有一个叫农夫约的人,他养了很多羊,其中有两头名叫mm和hh,他们的歌声十分好听,被当地人称为“魔音”······
  农夫约也有自己的假期呀!他要去海边度假,然而mm和hh不能离开他。没办法,他只好把他们两个带上。
  到了海边,农夫约把他的羊放在一个(n*n)的矩阵(有n*n个方格)里。mm和hh十分好动,他们要走到m(m<=n*n)个地方,第i个地方的坐标为(x[i](行),y[i](列)),每到一个地方他们会高歌一曲,制造q[i]点魔音值,因为他们的魔音十分独特,他们的声音只能横着或竖着传播。每传播一格,魔音值会增加1。(传播的格子数取最小的)接下来农夫约要住酒店。为了方便照顾小羊们,他选的酒店的坐标要在矩阵内。但小羊们的魔音让他十分头疼。他想求出魔音值最小的地方。
  他还要享受他的假期,所以他把这个任务交给你了,加油(^_^)。
 

Input

第一行输入n、m和z。
接下来m行,每行3个正整数x[i],y[i]和q[i]。
 
 

Output

第一行一个整数表示魔音值最小是多少。
接下来一行两个正整数zb1和zb2,表示魔音值最小的地方的坐标(如果有多个答案,输出横坐标最小的情况下,纵坐标最小的)。
 

Sample Input

3 3 1
1 1 1
1 2 1
1 3 1

Sample Output

5
1 2 样例解释:(1,1)的初始魔音值为1,(1,2)的初始魔音值为1,(1,3)的初始魔音值为1,(1,1)与(1,2)的距离为1(abs(1-1)+abs(1-2)),传播过程中的魔音值为1*z=1。(1,2)与(1,2)的距离为0,传播过程中的魔音值为0,(1,3)与(1,2)的距离为1,传播过程中的魔音值为1。总魔音值为1+1+1+1+0+1=5。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAdYAAAGuCAYAAAAtayf2AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsQAAA7EAZUrDhsAAGyGSURBVHhe7b29cuu+0u7ZPhdwrkJy4NIVyOkkkhNHntCZXHUSKVlVb+DQwalaiZy8VVLm1JGTJV2BFE7kcmAqOflEO5pM0w3wAyQBEqRIiZIe7vL+e1kgPn6g+KAbDeBmzxfhAgEQAAEQAAEQaITA/2gkF2QCAiAAAiAAAiCgCEBY8SCAAAiAAAiAQIMEIKwNwkRWIAACIAACIABhxTMAAiAAAiAAAg0SgLA2CBNZgQAIgAAIgACEFc8ACIAACIAACDRIAMLaIExkBQIgAAIgAAIQVjwDIAACIAACINAgAQhrgzCRFQiAAAiAAAhAWPEMgAAIgAAIgECDBCCsDcJEViAAAiAAAiAAYcUzAAIgAAIgAAINEjgrYd2939PNzQ3dv+8aRICsQAAEQAAEQKA5AmchrOuXGyWo/dm2uZYjJxAAARAAARBogcBZCOtosSc53W6/X9GkBQjIEgRAAARAAASaInAWwtpUY7uWT+TaFmtc/bysu1ZF1AcEQAAEQKAiAQhrRWBNJRf39jN9hJZ4aI0vxxDXpgAjHxAAARA4EQEI64nAi3t7M+0ZpY/oz3xItPwi2K0n6hQUCwIgAAINEICwNgCx0SyGd9RvNMN2M4sCy7Q7+54QsN0ub+QOAiDQfQIQ1s700Y7+fXLU8+CWTDu2M9WzVETmiL8eo8CyPQVzolkf4trlPkPdQAAE2icAYW2fsVcJ65c+zbYTWi1GXum7kKg33ZBZ3d7DEw1pSz9BF2qHOoAACIDAaQhAWE/DPVWqWH7j5ZDmwYLOR1Y7AA5VAAEQAIEOErjh9aH7DtYrJzz2zSHYwtuftxiJqPZnxKK6oVQsU9c7JVe/Hb3fs9U9WNH+jKzus8OMCoMACHSewFkIa+cp1qygBP6Ml+c8OAjFNNwQazgPMpHONcHgNhAAARA4YwJwBZ+o885fVAVcj6abJHjpg1fmSnQw9rk40UOFYkEABDpBABbrKbph90737P+17nw8nFOwmZ5NZHAWnxowENzBp3isUCYIgEA3CMBiPUU/9Ka0UXsfW37OWFRPgRJlggAIgEDXCEBYu9YjZ1OfNb3cvKR2idLRzUSTR8Q2n003oqIgAAKNE4AruHGkV5RhzqV9zoFYV9RvaCoIgECrBCCsreJF5iAAAiAAAtdGAK7ga+txtBcEQAAEQKBVAhDWVvEicxAAARAAgWsjAGG9th5He0EABEAABFolAGFtFS8yBwEQAAEQuDYCENZr63G0FwRAAARAoFUCENZW8SJzEAABEACBayMAYb22Hkd7QQAEQAAEWiUAYW0VLzIHARAAARC4NgIQ1mvr8Qtor5ygE/1cQHPQBBAAgQsjcNSdl+RliAsEmiYghxngAgEQAIGuEDiaxQpR7UqXox4gAAIgAAJtEjiasLbZCOQNAiAAAiAAAl0hAGHtSk+gHiAAAiAAAhdB4GjCinmwi3he0AgQAAEQAIESAkcNXorqYptv3f+n23118z/z9bu0wYK1XzoWGHQOdez2k4zagQAItE3gaBZr2w1B/iAAAiAAAiDQBQIQ1i70AuoAAiAAAiBwMQQgrBfTlWgICIAACIBAFwhAWLvQC6gDCFwggfXLDd2/71It273f083LuqS1O3q/z9/rg0jlf/9Ocanrl/jffmVHpazp5eaFympqr5Pce0OlzQxvFk4uJoV13r3T/c09ZRCXYPJsl8rb0X5hav1M8q5aH59ePcM0HIBz9IsxyVY5qR8OXtp3+cda56OTa7fAc2jjOdSx3V7qcO7BfD+0fLdtfZb8bbifB+k2rSb590OcfrIqABDs50Pap5KsJnsazvdSRBCs1OfRv1VGDdU504L9hDkUVjXTimA+TNeLP1ccpO5BoOqfvdTnUSGF7ZjsU9SECWX+ls1c5WdPI+UOs52mUHIbqjS6w4/yoVVjNTv+BWE9PnOfEs9BtM6hjj6sryGN7QVc9vJNiYUJKRSOwve2IaLxrTkR0eJrE4a8OJaIj7MTVx7CqtMUDzqynxuDkALhS6ql22oTO+kHYaD6w6MeipdDvDVLV3vyA6drePYhrJ6W8jW80M+hjedQx2t4cdja6PuSzvWhUssCwfMR1dDCywmmhwAVWsgW0cmLcrbuprD6CnlEVO4tE6O0ZW63IN2i6vV82rhZ/haVbR8Q+bTFqzZnlwhzrGfovkeVQaCLBHrTjQzULT8rmvD/WD7tny9GtH7p04zYkTzrxycXxacY9We05QYvx8mpRrk5Pp73Gy9dVL7pjedszVOR5Pdo/ne0qFbnzbSXLmj3jz63E3rN/l2l6tH0dULb2XPFuVB3D+/en2k2WBFjIwZH4+85fZhlqzlQ5snQJo+SKLnUfK46HSqZC12/HDgv+vnM7Ll/VYVwCQEIK54DEACBBgnowKO0iI1pyf8bG8f96c+T4BglbptXGuQE2CLKwVwk2Li4zLdEVRPx4DKUKPP/WIiyop8TyJoU1n9nRPM/5JSV0R+aD7c0+5sNhdJBTnlWnLaf/Xskfjv698mKuRzr+8ZEq82U5ZsvFXAU/k0NYgK6e9P5pAcRwjS5Rn+e6LNfN1CL83n64LIW7vbX5HrOt0FYz7n3UHcQ6CgB9u4aQuYjjvUbEllw7I5UV9oCDVjU8pZbVFpKhFMi5xoMhIIXhfyymL0th/T0kLFiU81hq/WDBwMshulI4REtcla8sBoST1tmBgIb0kYp57WRz6J0LGiRoD4Tfaj8IpGL0gb09MmeAFeYcm9KH/NvGpvR1M7uSA+QEi+BHlDlixjQbRGa+t3e6TshrJ3uHlQOBM6TQNptaxGp0L3bROuCn0GBG7JHtwM28L7sC2dsbmCeKyaOxqU5C3V6gGCIXej21NbqRyh6Ba1h8WKPMC3fjKVAtRsvlq4yVXW5nPdGBDWyXHP5hgJb4KrtTT9oTp/0L706ylLDtEs/GsxowV8RuyWSJVa7X/qu3cbzvhHCet79h9qDQCcJ1LdYsy7jclEeLYrdkKNHVrTv32Rtq5OYtrr6n08UsEhNFyIU5lxk2q0qrtc3nlu0z63mCxn9Yat1OyPxCKv1qTk3sOQv7bW5ghNLef0iacw5Z3Hj2tzKiTs5u544XzsRxsgqrvtIiQW+ogHPk/uu4a1bUtfvKxXW6AEo75iuNxX1AwEQOBaB+hZrQZBTym1aYU5v9EiTUNDi9hsbR7DMhfPCOuBn+PSg5yx51nARyPyjFqivR22xfjzoXErnVrOwI6uVrefiQC+bKzi0ltnqzFvZwsJ0K4fub8Md39R8cvnzo+tx7XFMTmGN5h768qThAgEQAAEvAtG8niMCuK44Wsr230lpRH/YvWu6YXe/7KQc3FKgomT79PkUKNFMXJtcoMxd9n/olYOAxDu8HOsAn14vlF0OuKoqWEoUm1QdFQHsv8uTHhF8Kav4J8hAjeZqxZJmV31hQJbXs8CJhnfU9017QemcwpqMitIRZBfUdjQFBECgLQLRSzoVEGO6K11RqN/0WzrPJ5XW0bHZ5SSu5ug5xBn1VX2Se6P3XFog/+loXRUMJNZgNFh4pK/IfXtiX2ccdPX1qAYEvlqtBiPjb5qv5vRtzocKuGiuNhz82AcNruClPPndv0+1TOoar1JX8DVCQZtBAARqEAitJzV3GEWoRn5TlV3irgwkCjUUqUSjRvQ4KZhfTM1JyrrXOf3xXjop4siWp4irWuM5ocwSTyXWYshuZz/0aA0GMtytWSUzrT2ZJ+XgJ/+6VWGt3daRW1pbv9n5Ve3STrvjk6CiiQQ9jSTgKYwWts71Zpb7xJ3kCl6SamjrOfpRRu9HuBSoShMvIK3HQec6Au17HlR2e7j4tHXQ+e6/ifr/xd6H/020+V/N9g4OOm+WZ93ccNB5XXK4DwRA4FgELsJiXU+JRPhEVHGBAAiAAAiAwCkJXISwjt55Q8//6B9zR5FTgkXZIAACIAAC10ngIoT1OrsOrQYBEAABEOgiAQhrF3sFdQIBEAABEDhbAhDWs+06VBwEQAAEQKCLBJzCmmy5pbfP2sbHOR1wCkIXCaBOIAACIAACINAgAaewurfcqrCVWIMVRVYgAAIgAAIgcA4E4Ao+h15CHUEABEAABM6GAIT1bLoKFQUBEAABEDgHAh47LzXfjKZ3Xop2XLLVdMVrW713PStoKnZeav45qJMjdl6qQw33gAAIHJPARQjrMYBBWI9BubwMCGs5I6QAARA4LQG4gk/LH6WDAAiAAAhcGAEI64V1KJoDAqcloE9fcZ2qJsed3b97nQunm6FOTLmnKrectv0oHQSIIKx4CkAABFokIKdjHSCMowUfPs5HyT3LOaq4QOA8CEBYz6OfUEsQuDAC0RmiesOZZEOazDmgfL7nWO9Qw+eo5j+rZP1eGEE0p7sEIKzd7RvUDATOioC4eW/UIeLRIdvZXdrW9MUiqXdx+6LHYE7DsIXZDWlWfEzVkM+A3suB4wU/m2nvrBihstdBAMJ6Hf2MVoJA6wRGCxHBgOaslpOV/B7t0sau3L6I7pc611ELJnZwa71DUMDJCEBYT4YeBYPAhRPYvdP9jew1PqR5oIX2Mdvk4R31cxh29Ptt7k8OF/CFPykX1zwI68V1KRoEAh0h0JvSZr8SI9V+BT/EXmPLFdAPf6Ct3vyPuIlxgUCXCUBYu9w7qBsIXCKBn79sybIVylFJw6cHys2S7n7pm63cu7wpyzS0NYsLBLpMAMLa5d5B3UDgEgnc/WFLVluituCj3b9P2g6f6KEgLmlwi6ClS3w0LqVNENZL6Um0AwQ6RUAvp3FtFBFXVc3DmtHDa/rLYcWT12neklU3aTcxLhDoMoHO7BXcZUioW7cJiOWDqxsEZD1qX9bbqIClDU17IrBvdKd+t9RRdlZ6u6NgI0Iquzbxch2ah/+2takkv25gQC2unAAs1it/ANB8EGiKgKxj7f+8hgFHppBu6Sewl7KWha2D20RUtxNaKZF1XOsvjjIeEDzBTfUa8mmDACzWNqgiz6MSgMV6VNyVC0usWNutLKS8DIfNWhp/5y1V270SLbxo4izIyi3BDSDgRwDC6scJqTpMAMLa4c5B1UDgCgnAFXyFnY4mgwAIgAAItEegMxbr/j/tNbKJnHHQeRMUD88DB50fzhA5gAAItEsAFmu7fJE7CIAACIDAlRGAsF5Zh6O5IAACIAAC7RKAsLbLF7mDAAiAAAhcGQEI65V1OJoLAiAAAiDQLgEIa7t8kTsIgAAIgMCVEYCwXlmHo7kgAAIgAALtEoCwtssXuYMACIAACFwZAQjrlXU4mgsCIAACINAuAQhru3yROwiAAAiAwJURgLBeWYejuSAAAiAAAu0SgLC2yxe5gwAIgAAIXBkBCOuVdTiaCwIgAAIg0C4BCGu7fJE7CIAACIDAlRGAsF5Zh6O5IAACIAAC7RKAsLbLF7mDAAiAAAhcGQEI65V1OJoLAiAAAiDQLoFSYd2935McLh3/vKzbrRFyBwEQAAEQAIEzJlAorOuXG3qmD9rv9+HPiibLMd1AXM+4y1F1EAABEACBNgkUCutosafNtGeUP6I/8yHR8ou6arfu/pvo5n8S3fN/cYEACIAACIDAsQmUuoKtFRreUf/YNS0pbz3Vgtr/r45VDNUBARAAARC4KgIVhXVH/z63RINbMu3YLhAbvRPt/6N/Jl2oEOoAAiAAAiBwlQQqCev6pU+z7YRWi9FVwkKjQQAEQAAEQKCMgLewSnTweDmkebCgQ2RVoottl7hxzZ+yiuNzEAABEAABEOgiAS9hFVHtz4hFdUOpWKaKLRJRlQhj2xW5caP/RiJbsQgkBwEQ6AABeWfcv+/SNdm90/3NS43AxzW9lN7Hae7fSZVoliO/R39fv9BN9LsHI7XUsPYKCJ86cyWkTuZyxpLfU0xr81SQ6P3+huzNk7rfU7b7SpFV5Fua3xknKBVWWXLTnw1otW9PVIuEVgQWFwiAwPkTWP+d0ZaWNM6KRwWxc1MY0eNgRn9TyxVYPJ5nNHidqpiQ9deSJuHvPjR70w+af5csL1TiZqzzj38fc0stbVWfG6I1WhjLGaNlje7/plZp9Kb0Mf+mcaSOzrpE9TMHNQH9bId0Z4lC3b2/0XLy6jSicnsbRG0eL4m2M+rbeNQeoPj0VAfTsAXpvFYTYvNysl8VJfL8jJsep5Tfsz9sqe5dP1HaojTmZxy8tB/+b3d+vvmY6ax19mz7uSQ7hzaeQx3Ppb/bqKd+Z2R+JvwGWU3U34fzwCh2tVffVeNvwXyYv9/yvojKyOUnZQXz/VDeW1xm8rkuy1o3ld7yWeHfhvtUU3Iwpbxm3p22fspzNusT7HlVZJp1xCTKLPvvuBCu93C+j3pJlWP8W5KpPhLO4bWaWFhI/kaaNp61LueZqF22lkUPWwZ0WQNNUZW0VYU1EjiVT4EAR59BWMt6xP75OYjWOdSxHv3LukteyFlRGw5D0YzFj1/amZdv9qWtqDhEwCyjUJDlfSXCbpSVKscpMq4+EdFMxMQ6mPAeDBze76otqXdykbAWDDC4KnmRzOel2c2VeGe/j5OVLf/2BhiH02snB7crmN0Mm3jHpYxrYqNdK8e+ZP4VFwiAQNcJrIm9ruwV7Os5zfUXuxZXtNlslNtzRexe5aCNwYrfKz4rDIIf2pasne9Nw7x5VD2csOzx/9ii1G7WzS39FTfl96+egw2vYeQHVe86CcqUuUWbW9f4m3Jbj2hhTI3JRjqqnNQP71LH/2O7LveZdufqOc4q86tx2pTrfE3sYaf5x5QCnrYzPa6DW9tbWuq+JxZH1uJA1U1+VxfPkb7RgD77Zr1kJYj05XNmzvWWphvuy3hto27rYiT5c9uHnL/6mVOg2F7XVTrHei44oh2XZE6Wv0K05Y0iogCoru4SdS5sUU8QqERAhJRvkBd38PRJ/a9HFlCKRWv8zS9bfiMvx5n5Rkchu99v/kL/UFBQCYkFEeH5euTd4v7cyRuAZrFA8Hwni+0kzkOvx88LjxadvEhGAsLi0ZhR0VPCZCtLDT5EsHgwYv3cqMP6ZUzf8w+aBi8kXP+4FEwGJzG/dPuDny0N737phQcf2yX3XCi4ZtmrCfNMTWB/qf58uwu4rjyImZOa69Xzr1/0+PHE+x280uaD6JnTXdsUq9sV3JCFzH2Zy0n+lv3xcfGeMo21zg0x6ko259DGc6hjV/rzNPUQ1+FwP+F5t8gVHLlprVNu0ZRT+GHeFRzOwyo3cnouL+1uDlur5nJtrkft0tTFpF25hZzC+rmmC6u6gePnN5Oh5GP+SeUb/SHjxo7qm3V/J/drZqkiJI/YXWzO/5pc/J6YuI+85qavzw0sFFu1WIuW11QaASMxCIDAWRDYvT/TjC0VZTSGV+SmtXp9oykn64fiLhVrM3QjrwZshdqXgUQW6424fDPRuNpa6tHD05C3OReriqNeh0/0UDqfFUYVs8va5bG2uYGVa5VdoHNWNxY3u9VpZsjRvG/LCT26rM3Rozr8JGX1sdu2//mkyhiyuSgG7vItWm70S9/sCrdF/KouEY9C7FqX6GBdtjPaV9zjrsht5eoN2xjMQ9evcWjLWTy1zVeyNWGFqDbfWcgRBLpOgD2ONLf4I2Ph816KIfOdPL83YHdoJEKyNMUhriJwStBM96m86FlyIsHqTV+VQPV50tBcduOum55f1C5ry0/Ov6nnTUXwAnbXThcr9o8mA4GonPT6Xi3eDK1gHpJd1Mp1niyXYW1Ubulb9UA8sAs7oDnp5Ua7f588J10wcBj9UWn7ynUrS2sek7Jt7udkIjX/+JnLa3jefJtabiNLjq7zak1YrxMnWg0C101gtHCvd4+CZcy5uzhwxsQmR1PejFk5LMFNkbg+v9NvCrUE8SgVDC07m2DxWlcVbJO2Du3BR2J1sVgprS6zOqNAJC3Ew6eHMLiTBTF4ioOBZP5X2v7xkFRcWfgscx9lO+9wu1cTXhcbivlokQ0I0nO2i/47PWcGDvknUqeVIDI1yHCayvZnWc/JhgtgYbFaIbUirLBWr/vlitaDwEEEQqvJGTAs4hpba1FJSeDR45dYl9raNTdUEItxzC7XiQhUI5tSSCCtLuvzSUfYpow72bCh/0OvoUBHFmevF/qg+XNlrHJEb6lXmps5Ygs45xJOgdaDiS2LnTWIKXV4yo4kJkyupWFVl/ebRHwP6Snyo/tYrObuV+UFXESKVoT1IsigESAAAo0SUMtvMi5VsZgau8LtAUU8ZelHcPfG5Yn7VFuU+u8LWiy027TfgLhG1m763Op/OgL6mehDLTWJIoAf6Stqv7hh2WXLqlphm9jQJczzxPlL2hgekmKJXJZdp5LLcLPL/Ki419kDoKKulbcg4/ZW89bhpeZnQzezsSRTBhR6rlcYM9+JjvyerELLuoMnojX23Nky8osDq5aKyym8QT7P/pwy4tenbGudq2HpfOpzaOM51LHzHX2ECkrkqLkrkjWCl+uRjQK2bhAR11dHsCbPQBJxqqNzbbshhRsWWMJ6U5G3BpN0pG+VqNaoflXuiWN8M20r29lJ3xdx1RHCZrkuVu4oYCd7I6I4jl4Od9KK+kLjzZaZ9NW1bcJ0IziaVG4fN7DthJuub/5g27O4YXRNdkOtvKz90uzjUate5k3nUMeDG4kMQAAEzpoAXMFn3X2oPAiAAAiAQNcINCqsPtZq1wCgPiAAAiAAAiDQJIFGhbXJiiEvEAABEAABEDhHAo0JK6zVc+x+1BkEQAAEQKBpAo0Ja9MVQ34gAAIgAAIgcI4EGosKrmKx2iI7zxEe6twNApcWnd0NqqgFCIBAXQJHt1ghqnW7CveBAAiAAAicA4GjC+s5QEEdQQAEQAAEQKAugUaEtYobuG5FcR8IgAAIgAAInAOBRoS1SkMxH1aFFtKCAAiAAAicG4GDg5fqWKvY0rCbj8k5bBd4DnXsZu+iViAAAscicHSL9VgNQzkgAAIgAAIgcAoCENZTUEeZIHBlBHbv93wc2T2973waro95C8/0Tm6QY+EaOOrNpwZIAwKHEICwHkIP94IACGQIyFmfmfM8+d/63NUtzfr5z/SZqca1+0ef2wnd/YoYG+nlXFDzYO3ws3s/tUZPgcDRCGCO1RM1jo3zBNVyMsyxtgy4yex373Qvh33nDt4W8f2iR3UIeP4S6/aZPih9eDinE4v17Y4Cy0HeTVYbeYHAoQQOsljrBC4dWmHcDwIgcCYEeg/0RDN6TlmU4uYd0/f8kfpWt/Ca/s6Inh56Z9JIVBME8gQOsljrCiuigrv5KJ6DNXgOdexm7x6nVuuXGxKPbeVrsqL9gu1XsUrHRCtlzYoI90l5kR3XcB7kLdvKheMGEGiWQG2Lta6oNlt95AYCINAlAqPFnmSteuUfEVWeaX2xqPJkZc9vNelSy1EXEEgI1BZWQAQBEAABOwEd1ZsKPLIENKnPjSjf3fsbLScTyurlcmzPq5ZljC4DgSMQqCWssFaP0DMoAgTOnIDL0oyt2YzJGfwMaLV4zLUaFuuZPwhXWP1awnqFnNBkEACBigRclmZsyWZMztHCHiUMi7UieCQ/OYHKwgpr9eR9hgqAwFkQqGqxuhoFi/UsuhuVNAhUFlbQAwEQAIFjEoDFekzaKKsJAhDWJigiDxAAgRyBqq5gWKx4iC6FQCVhhRv4Urod7QCB9gkc5AqWXZtu9BrWIot1O+tj/+D2uxIlVCRQaYOIpoQVG0RU7KUjJT+HzRfOoY5H6i4UAwIg0FEClSzWjrYB1QIBEAABEACBzhDwFtamrNXOtBwVAQEQAAEQAIEWCDiFVfb8THZOuW+haGQJAiAAAiAAApdHwCqscmzT12OyP2cw1w3HsYeX9wCgRSAAAiAAAs0S8ApeEst1yOUOeDNstVf2gReClw4E2NLt5xAYdA51bKl7kC0IgMCZEPCeYz2T9qhq7v6bSA4mv+f/4gIBEAABEACBYxLwEFZ9GvGWz0tswlpts3HrqRbU/n+1WQryBgEQAAEQAAE3AYewmsc+9dXd6hDijl+jd67nf/QPjmrseGeheiAAAiBwoQQcwtqj6SYJXpK2y9zWy/pCKaBZIAACIAACINAQAQ9XsC5Jjk5cfkFZG+KObEAABEAABC6UgLewXmj70SwQAAEQAAEQaJSARVjX9HLzQlnbVM4knjx2f561UTrIDARAAARAAAQqErAI64gWwR298ZxqtPOScgXvm1nDWrF+SH5iArZ1oyeuEooHARAAgU4TsLuCe1PasJDuwx9pAWzVTvdjq5WDuLaKF5mDAAhcGAHMsV5Yh6I5IAACIAACpyXgvaWhWK9NXW1taSg7Lrk2h1jx2tZDrG7ZeCJ7NcmkKbaH5FNkmXalrdjS8JAexr0gAALHIHBRwtomMAhrcwOrQ/oJwnoIPdwLAiBwDAJwBR+DMsoAARAAARC4GgIQ1qvpajQUBEAABEDgGAQgrMegjDJAAARAAASuhkCpsMqcVlcCV66mV9BQEAABEACBsyVQKqxn2zJUHARAAARAAAROQADCegLoKBIEQIAJrF94d7f89qn8AW+rek/v+ijo/LV7p3vrfT5U9ZGY9pO6Ssp1ZS/tuH8nV3Vdt+3e77n9Be1M3eiod2nZli1qS+/x4Yg0hQTYzVt48c1lSSp/Lnlmf/gM1X2Xf6x1rtzybt9ga2P0t67U/Br6QbFeTdR3ZMJ7iRZdwXyo0g3nQStd5J9/sJ8P+XtdVmGjlnxilrXeqsySfFJpgvl+aHmnJM/KZJ9gXO0nNNzbcJWVG7Eo+p7kPlPtkDLz77zifMw6cxaqjZP9POzvsjqkngf1LBltln8P53vfJ8b/GWjwEezI81+3RaWqCWHVgn8tL3TXF7buA9b0fVfRD+olan/5RzxFlEwWTQtrvfy1uJbWxSGE+j6XCGke2XqlBIOlIld+KEixsGb/HT+gXK4hNqqcjPhkhXc1sfSR5F80KJDPraIm7c6IqfHlkbKtXH1FUtKF9VLt8BDWes9AA9/4Djz/h7YCrmB4NFIEEKh26geCXX7PM6L5B0177rqMFtFe3itia6jxq17+PZq+Tmg7+5s7HStfwYk62EOeN/mR857lWr+MaTlZxX/XnydtTOq1JxYI1tUneijglJQrLlE+WKQ/oy0taRwdMhL6hNcvb3T3MaUoq9EioDnN6Dnnj/5VrmQJ6hwvtzTr699f1kb+y3F4gInFzd17oKdcvuLmHdP3/JH6Vn/ymv7yI/Hk11D7szBa0H5h7D03uI3b6np46j0Dhz6K3Xj+D20FhPVQgrgfBJoksP5Ls+2EXotUtcnyms5r9IfmwyV9Zc+d9Cnn85nFigXXFADnfVps5iyGwUt6znRwa1NaPrWLRVrEmC0/JdxKmLWa0xsN6DMUSX2qV5/7gXiQ8JyZ672l6SYZCPBhmuHJX5I/DwCGnL/6mVOwX6htVNdcv+iksCTfvuVvY+qbdYgmgtdfPBQYkG6WnmuN85PzPLcz6hunkd1HgwE1F22WrX/vS8Ni8c9+7jvn69OhNdKc+/MfNhnCWqPvcQsItEVg/aUOPj5oX+u26uaXb48enoa0rKOsTx8seFqMyi6xbL/Fqg9eaPw9pz+um4IftlCja0f/PrcUCW/ws6Xh3S+9sDhtl8w9FNzIitaWNFulf81RwpeyfN/uAv5sSPM50ZgFUAcifdHjxxPR4JU2H0TPypLlPcpj70JioZtlOH9XAwy2hEU8Mxd7dTNWfdryV8kzp5SlvAM5rwDfH8xpGAt4WQ+08/n5P/+aC4S1necDuYJADQI7+v0WXfWRlhrZH+mW3u2A6Pu3JErWcMcqt2oifvao3chiY5uNRUwbamz18S+T18iFGxBrZf4a3lFf/VU+n5DGq1kPbqfKkhXR2Vi8BEoUUxb0I59XzWrKZStX8IwrwtafsgLFxSyuZrEG+z/0mjrDOmNpWizJ2Ao1Iox372/sGufZ10yrluO8Jard02WdvCY9drM8Y6lBSFk+bXx+Gc//0YXVPDg92y2yyX2Xf2yPUeLesT/k5/p5l9vaxte5O3k6hKE7FWywJvY5Vjaz2NW6YjPwhhKX5i+xBuqL3bb9zyeas9IM2VwUwVm+hUtddpJuSHdaRfOXuFQtIqutTcd32LWMRrl6Q6tRLD3z38accLYSLksztlqjyebwxuBnwK7xx1xbvCxWCwIl1EztcWRZhiPpYz4NdrV3Vpfz/B/NYsVh2d5PFxKCwJUT0POVA7YKs+tNWRtptZnSrSL0wOl0kJF4a3f/PmlbFMwk87+ctq9ct2IJGi53m2s0I3KpTjHnNcVKTc1zcgCWowddlmZqztS4d7Swu8brWawyL83u7/kfdrcz4+CO3kJ3tRS5ExMeVyMEjiasjdQWmYDARRPo010YT3PRzfRqnA42ysYx5YVGLFxO13+nZxaNxC1sK0SnXZF23VZ1ues52dAcPpLF6kJV3WLVkcdLrvdH5PKWOVi2tr/HRvSyR7SwV/fVSnQ5zz+EtdYDgJtAoA0CPdLTk1X38KlQFxUp2m7kpwpAafoFXeii1Es0tiwa1iCmVF30PJ5cy3EVDjI3OUyWvPhYrMK6xo5MPr1ZzWIVUeUoZ7bXA7b2UzHTKsBJW8WpgYNPJVxpaj9jl/H8KyxlC2E9kpRlEX8ueeEHDJp8BrwfvnNJ6Lng370LkHuTAUHguzlA3fy5BLVJQ+HGSYUbROQ7ylbnZNemcMcnx+YKapODuDLh5hPRv0PWq6LdjKKNFBz9ousxDzd34LpMeEcjTquKSG0WEdXT4/uf27zB3DyimG9uN6uIdemGEJqN2W91nwHfZ8z6lezI83/o6+KownpoZXE/CFw+AQ9hOgCCaxvBA7JM36q2oisW92h7PnO3xlS9wu3skgFYfoejKL1++ZvlZQUs+szN1bmVofGSl/L07oR6q8noRwuRWzQTofLsV6uwhMJaunWjIdoipIXbAlp2uKqwHWXR83LYM+bJqeYDe1jd/Au9kaRFVj+OjTvEJ4J7QaAGAdkkfcxBOp5rOv1LEJfgM9HHpnBXJ//8sim1y/HzKbAuXamfL+48HwINPGNn+/wnvQRhPZ8nFjW9IgKyBKQ/46UWjYtrWxAL5vHaKhL5XiyB83v+010BYb3YRxMNAwEQAAEQOAUBRAWfgjrKBAEQAAEQuFgCENaL7Vo0DARAAARA4BQEIKynoI4yQQAEQAAELpYAhPViuxYNAwEQAAEQOAUBCOspqKNMEAABEACBiyUAYb3YrkXDQAAEQAAETkEAwnoK6igTBEAABEDgYglAWC+2a9EwEAABEACBUxAoFVbZ8RBnqZ6ia1AmCIAACIDAORIoFdaoURDXc+xe1BkEQAAEQODYBLyEtWSf/mPXGeWBAAj4EpANzW+Mg6zj+9b0UnQuqzpT03afT8Gyb/ANvaxtaUvKdWUv7ahxtqnsOXvjff6so96lZUubMqxK7/HhiDQHE6j7/B9asHkQDuflPBen6DP/w3SQEgRAwCSQO/Oy+CBTddZpcr5oOUvXMVnOo9KMLFNpSo8sM49ukyPJ8ke9xefBFrTRfQZowTmm+jw3dZ6ovKf8fzLH26k2TvbzovNZjfyH8yChpY5oM9rsea5olEHU7lSe5d17WIrCY+WSrNusmzovN2Zqf2aMmhz1+T8EbkpJTymsEdxDGoN7QeCcCORFL3MQt7Ux+rzK0hdw4WHiLhHSL7b0y05efOYLz1J+KEjx+arZf8ft4HKNA7dVOZkDuLOCv5pYXrapA8QtkORz68He5oHh+fukbCtXX5GUdOGgwfew7yzr0n5t6gFXfVQsZG3XTRjlD1b3E9dSTgc8/00g7oSwQlSb6ErkcQkE8gd3W1p14GHi6oWZsxrtVmZeIIqE1SHYYVl5kcznpYV1ri2TjPU5Wdnytx2qbht8RH9b7QPD0DRMTqeVrQ43twq1+4nz8Qik79ZtKxWMRh5yz8GZOSA6Rt1CMSw9b/2Iz39d3Kk5Vs6kMAK46QAmyS/KU8rGBQIgwASGd9QvAjH6Q/Phkr6sc5glBD+fabyc0Gox8kC9pr8zovnHlIKX9Jzp4LZnuX9EC/4es6iwDgUyaFe/q4vnut5oQJ99/Z3XP32abYm2s2d635nZ3dJ0syceAIQX15fzWowk/xVNhpy/+plTEJ5Xu+b65fPtW/42pr5Zh2gieP1FS66fbpaea43zGy+lktSP631D91GF1Vy0Wbb+vS8NW46N8s0095n2enRFk0nWf5n7hF6ntj5ssqCW8jra81+//tbgJZuANil80QMreUY/9ZuAO0HgUgjs6N8nv5AHt1T8yuvRw9OQlnWU9emDv3ML8pLVlzF9zz9oGrzQ+HtOf1w3BT/EtQ4v3YZIeIOfLY8TfumFxWm7ZIEKBdf87q8mW5r9NUcJXxwMdENvdwGL65Dmc6IxC6AORPqix48nZvRKmw+iZ04n2jhaJO8SM+/S39UAg4OPRDwzF1tO8fspXV8jYW9KG+M9FqVTg4LJKn9/MKdhLOCneW7XX9zWyaPXM3C8GvJg5nlGW2ZWPuY7zvN/SNtzwtqkgGYrlhXUQyqOe0Hg0gisX8SC87Mme7cDou9ftq2KriWNDWsq0Q5X1G5ksbHNxiKmDTW2+viXyes0FPuAWCvzV2xly+cTelQivKPfbxknTJUlK++WjcVKUqKYeps+0oIFiLjs8ZJFd8YVYetPWYFsV477/AIWa7D/Q6/Kkk1EPWVpWizJ2Ao1Iox372+0nEwoNpDD7JbjvCUq91s0OMNjTVq7LCOR1CDkFE+w7hNr3Y5eHdMz0KfPJ/ZylKuqqmXbz/+hKKwWa5lL+JBC2xTuQ+qFe0HglAS0kLF1FvhZk3511S7UlBWlX0vsal2xGWi6NH+J37f6Yrdt//OJ5qw0QzYXRXCWb+9axHeSbkh3Ll+1uFQtIqutTbtQOZfRKFdvWH+x9Mx/i0vYAcFlacZWZ+JjVjkEPwN2jT/mcvOyWC11UELNtXscWZbhSPoyV79f59ZM5RgY1cztsNvkOUyezw96Vs+IfZlWnZJqPv91isrcU7iOtYk5VfPLBFFtoMeQxcURENFhI4xFdUPHm/bS85UDtgqzLzLWRlptpnSrSD9wuoDmNCPx1u7+fdJ2+EQPLl+1zH9x2r5y3YolaLgcba7RjMilOtec1xQrNTXPOWbxsl8uSzM1Z2rcOlrYBzP1LFaZl2b39/wPu1qZcXBHb4ZY7MRcxGUl0Jtu1Lx6rSmOykzdz3/lrCw3OIW1CRGUBxnzqE10E/K4VAISdNOfscW0P6aoRjR1sFHW+5YXGm1ZLPrv9MyikbiFbb2i065Iu26ruhz1nGxoDh/JYnU9W9UtVnFtsuBzvT+iEZLMwbK1/T02NpAonUNv82nv010YT9ZmKeeRt/35b6LupTsvmZG7vgWac6m+9yAdCFwbARFVFaHrGUxk8lEBKE2/oAtdlGFwCYuGNYgpVRc9jyfXclwlAlbmJof0FJnDPharROXW2JHJ51mrZrGKqPIcOdvrAVv7KYNeBThpqzg1cPCphCuNikauwjbKqEd6er54dv6QqrGrwqNueTd5NK/vMxg7/vNfjUihsFaN2EVwUjX4SH3FBPjl86Z8mekAI/UdKhUK3wAUV/BSnrty8Tq7IxQNCazKigbfo15y8SUvTBaYQRgRuxrQ7PmdAq2y+XlWMxJIzc+GbmYj2lbcg3quVwYh7JaesHjxHyer0IWbGWBUdQW7mu1tsSohcYhqKnMd1GQuVUrmnrVrWwWLqbno4u0kS13yBV+t0eOEtp//SgLfdACbrksbdUvc5JFuaM9N3oNieVo9A7Caev5rvKd8FsBytvFi7Wz6os988kYaEACBigQOXCCvSgu3s0u+v/kdb6KdofKbVugNBpJ7o00a9N9tC/ydGyYYmy9IeXp3QtkeMMlf55ctM/t5ksZrg4Hchg/hrkylWzca7ZY8CrcFtGxoUVo5v2fBtVWl393ufvK7vzjVYXXzqMGRnn+PmjiT3MgnPnoczZdKWjOoyfN2nyKQBgRAoJSAth5laYJt6Urp7UhwAQTkGXgm+jhgXl42px9zkFqNaYhigA3UrbCA83j+Kwmr2V4I6gV8P9GEMyNQMI93Zi1BdU9PQEeji/u1ySVebbbrfJ5/b2FtExfyBgEQAAEQAIFLIVAaFXwpDUU7QAAEQAAEQOAYBCCsx6CMMkAABEAABK6GAIT1aroaDQUBEAABEDgGAQjrMSijDBAAARAAgashAGG9mq5GQ0EABEAABI5BAMJ6DMooAwRAAARA4GoIQFivpqvRUBAAARAAgWMQgLAegzLKAAEQAAEQuBoCENar6Wo0FARAAARA4BgEIKzHoIwyQAAEQAAEroYAhPVquhoN7RwBddxY8fFg7jrLvqk39LK2pZCj22qc1Skbs5ceWZcvTx8v5lueo96lZefP76TSezrX45dbIekL+8N4uW0uaBmE9Sq7HY3uBAE+c/Rj/k3j6IWkhFbOv3T9mCIc0M92SHd9m9C90XLyStPUadtJuuSczUw5cjaqebi4WQ9VRxG3fN36MznJdUuzvq3emYHD7h998rmud7/RWZ/hPY6y79+jA7n5/M4V0dhbwF0DgBtK8jzCUyCCw8zKNCfqk7bq5p+/HvhUFUk5k3doexjrIu4It7rVp0POnMO9IAAC9QjImZX8pTV+zPNQ9XmZw3mQZK7OCY3OPZXjSTP/jlPyGaDGWaOqnMzZo9mzUVeT/FmsKv+is0Pl89yZpuqg1z0fQc7/b7+k7FS7omTGuayFRCVdWC/VDmsd0jlkWVvLr9eNxXepPrKwNe5qu2718rc8f4UtdZ+Vm37Gw+e9rM86wO3QxwHCeihB3A8CBxLIC0SRsFoOzxaBDsUmL5L5vLSwzjOHleuX3mRly98mlLaXb/S31T4wxgQJHsnbITS+wmqwdh6e7uwP3bbjCGtVcWq7bhXz9zlM3BzMlQwg/L8iXePmX3MzJVzBtW193AgCTRBY098Z0fxjSsFL2mU4uLX5ctklut8Tiwoba4EMjNXv6mL32RsN6DPlku2TeGq3s2eKvaoq8S1NN3tiiya8Jnwu554WI8l/RZMh569+5hSE53WuuX6JmzrKt2/525j6Zh0iP+j6i5ZcP92s0OUYuZYtruDYLepwkSsX9HLscJ37zvk20YeWPNZ/mfuEXl3++JaKbSzb0R+aD5f0ZZ3Dz5Sy+6XvuF8PrMG5cwubD2E98DnA7SBwCIH1y5i+5x80DV5o/D2nPyNHbsEPz2JG147+fW4pEt7gZ8vzW7/0wuK0XfI8aSi4IrrRz2rCc6B/zbfkl5ovfbsLWFyHNJ/z/CULoJ6L+6LHjyeiwSttPoiewznC0SLJz8y79PeFNIrnZ0U8Mxcb2nEd0/U1EvJc9MZoS9ImTjNZ5e8P5jRs6kVfs3NlzpEmj+TqzprZHvG2Hj08DWnpo6zq2Vzy/HdRfED4Wclk8/lz010EYT3io4qiQMAkICKmDTW2+viXyeuUtI0qgUkWVsM70rFK8vmEHtVbe0e/36yBt1NlyYrobCxWkhJFJXDR9UgLFiCOOOI6sOjOuCJs/elAJH5J9mcs0mwN9n/oVVmy0X0ZS7PoZWpEGO/eJaCKZ18zzVqO7S9jiwZn7lyT1i6LdKUGIad45nSfWOt2iurULLN3OyD6/uUnrOQaLayDo+yAK/GOuPK7DG4Q1rIHBp+DQFsE2G3b/3yiOSvNkM1FEZzl27t+iSnXmj3iV1VHXKoWkXVG+4r4uZbRKFdvaDWKpWf+W1zCjva7LM34ZZp5iwY/A1otHnO5eVmsljoooebaPY4sy3AkfcynrQ4sytcxMDpFVTpWZnHk8OVwY4tVRqDRfES90Wi+73RYfluh4x17VlAdEKhMgLWRVpspz3TK9cDWZkBzmpF4a3f/Pmk7fKIHx3IZkvkvTttXrluxBA2Xo801WmQqmMtrxEpNLbcZs3jZL5elGc/BZkzO0WJhdYvWs1hlXprd3/M/nCfPCQd39GYsadmJuYirYwS0NXotl3IFPzwN1Bq0l3VPBTSYcxg6QIK/9BwfkRpd8kvB9b0n9bDP2c2UDZi4FqxoJwgUE8gLjf7uLfrv9MyikbiFbfnotCvSrtuqLkc9JxsugD2SxeqiUd1ilcE/Cz7X+yNyecscLL9vvsfGmtnBbcH7qe2ns093YTxZ2yWdMv90MFvR/GoSSGYPyItacTncWFh71Juyjzz7YPr2WLiQN7eoXUa/rkXjZaulfctGOhC4KAIsGs/8vWHRsAYxpcQisQCW4yoRsDI3OaSnyBz2sVglKrfGjkw+XVPNYhVR5WhktteD7MBeBThpqzg1cPCphCuNikauwjbKqEd6erJ0drJ+7WrXzb9IFUhUMEDxD2bb8GYlPm7ey+CmCGfXgql/pxauZxeyy7+NtWg11p/VWxmEu0Dg8gjIAn69rjJaZG/fXEEt9I83bAjXmkb/Dr+Dq6LvbrQo3/F91fWYh5s7cF14nWvAaVURqc0iKmwGkNsIwNw8Qufj2oMi4RL2udo0IL/ZRf6J0GzMfN3vNPdGFpKv7wYU1qfS873Ydt3q5h89j0V7hFT6Njo3NMnk0hFuldpmSUxBsNILxc3dTOLF5ukvvf5zZpG3C4QnoEMbgPtB4JwJRAKiX4Dmiz4rYNFnbkFybphgfBelPPU9VhsAJINm/d12i2bygi0WxLgvrN//UFgjkSwdwIdCGtbV/pK3bGjRkBrkxL3Sg+bJqVKeSeLD6uZRaKUNIjL5OfrXr1vOnFuIItx5KWlM8uU0G2j+XkFYHV8cP8AenY8kIAACINAKAXnnFW9HWFrsIeJUmHkDdSvN/1g7VFkqcrbckraE61jDwAljSdju/VntHGJbJubtpU+F7idBUanldN6ZISEIgAAIHIuAvBNlbvCA8nh9ZyCHLNQ+wchVdgN1czYrmceOg8MOQFDr1rPklm5pskEEByHFy2PCheKTVRQiH+7CoRZzW0LwTxqBV6vrcBMIgAAItE6gN92wV9C+1Kj1wmsVEK4MKVz1USvjSjedHzeHsEoEWBwKHa6FMy1L3VCxOtOLxpM1Y+V7f/qf2VipD5AYBEAABEAABDpDILRYJQTfcPs6N7bOW6zZ0Hb3jizuXVw6QwMVAQEQAAEQAIEDCShh9dq9Jd4E2xTIzJq4AyuD20EABEAABEDg3AmoLQ3lpIzU7i2+FqvaszS99Zp7qzP39mjnDhH1BwEQAAEQAIGIwP/gjUnpc5vZ8Nu232jOYuU51TfzRA6dJVzBeLhAAARAAASumcCNrLy5ZgBoOwiAAAiAAAg0SQDnsTZJE3mBAAiAAAhcPQEI69U/AgAAAiAAAiDQJAEIa5M0kRcIgAAIgMDVE4CwXv0jAAAgAAIgAAJNEoCwNkkTeYFA1wio85KNA8Dj+q3pxXnWaGYXtRveGEadxyr3FBxoXXDOsj4U21aPLDApI5NO2tDSebBNdpdq4xnUs8k2++R1jVwgrD5PBtKAQEsEdu/3LDiGWBWIk6w5f7/ntIVp0hWVrUqH8z/qAHDz0pvCvBZuMh8vneMzypJrSHx8bLi9aea/vAdqrj1h28Z8ZjbRkjekdwhz3KYRLVbE6eocMK5rGdUh3vvct+/UIOSGKuD1zbliOns/125XAZPzEr3muVTsGO/kEFZvVEgIAs0SkJfaM30YIsW7msnmLM43u2yQHtD8e5wcmOGq0u6d7lkkRNC2s34s3lps1vR3tmWd47JSQldfzKJqJHuKJ/uK80HuaSEO5jSkCfERsMnfzY3J+XST/WpAs79rLZS/317gtVV8Q31pW9VLeI2/1aDh1KdvqZPFaE5BWJFD2lV272jBzxOX9qyei25fTXJpu6UQ1rYJI38QcBAYLfa0SZ1LNqI/8yEL3hdLn+ticX2dsFj+LUgT3ZsWr8jwXL/wLmi5TWCa3Ms7cuey9cni+cHDh5SAPxN9qBNfCtzRIq6mwnmcoCU8bQeFlD+AbAk9z4jmH4cdE1dekEcKPeiZvE4pOrGufruIyu+t8jx5VL+1JM1yaa2aYcYQ1rYJI38QqEpgeEf9ontGf2g+XNKXW33dd38+sxXLguthlsXbk2o/bnhtada3uXNd86d6y1R1TeZcb/7vdkahMZquZ2hlp63o0AJ1brN6uJVN67/q7OnX0sNXs3PPjjZn25HzQKTnqlMfq21i5/Qn67uv+gxVSV/6PFnmvVP5XyiXKgwzaSGsB8DDrSDQLIFQhEqts/B85DrK+iSuZ7/zQWWOVaxc5cqNz+e0zLEq167lUgLTp8+n0BW8mLIrW7uIaWwRxN6UNqZ7OPxdWdq2bVZVuQO6PeQwcs5a5qF5s/TcPHS2Rbv3v2Jqh1Yxu1B5cDPOBivxoKGvLPIwndSRBwXJfK+I1Ji+Dff4468EhulL1aW0/5t96oht49uBOErqjNRkTvtSudTnDGGtzw53gkCjBNYvfWU5+ViTPXkTfv/GL2R7RdLBQonhqS2M/FRuJFL6sGsPo7ag/Vx2f0Ziq5pzvNoalQM5xPL1OZhDTtAS3bOYcMGPyv+wa0cyhWvNP5Nxb7owXMXahUrbHwpS6bj/zEPCebDwwWZ67Lrf/ZLMGMdnX/Pvo2nk9tV1Gd65/RUiff/P2/91WJMtd48euS2lz5O92C5waRzIgRlCWA8EiNtBoAkCEvE5Xoo16GdN+pVpn2MVC2W6UaG3iSUVvvBDuym1FEcLYxWXq55b1fOdhuWWDVhSn20K5zVV9DLf9zhyuCPL3OaloAL6qaDOUTCQGiCkXORhQZb6qEEQy+mvmKW9B3qSaXRm71qaY4putvr/4T/8f//v/8n8OeuKrdJXRlbmICHlzpYBUHqQlh2UnZqLvZsb4lL6DOUTQFhrQMMtINAkARFVNu5YVItFpsky2U5i8VvRgEWzbHmJjuqN6maZYw0t06h+qZdsFHWs0jiW2zgroANW9HIhrm9wR2/GchjfaOFmuOl5UTU/HQ0WUsuQfEvR3oC9uIjFbRyvEfa7///mZNIf6SvMMx7INPAcpdzyEtiWHqQl3oxucLHTa4GLXzcRhNUTFJKBQBsERIT6swG/rBt4GVauoLYsq7l8/eZYkyU2MheZ3KO0iINzglAEAhXNZLvE2mBLidN+REFF8rJnQfoeG0FDB89H9unOVQWzWhJUxDO6pkfBKuw513A4b5o5t5oi4RIgmWCub2XanuCqY/1fA5caXQFhrQENt4BAEwREVLUFVN3920qQS50Xq4BQImFrg4ijzBsnVq7ynipLrchdGd4naznN+cpMWQH7cIvmI/36SAfu+InZln4iY5Fdpc/W9bJslZsWOG86IW2Ol8/wfS+5NaPRedi6Ltu4EL8WNJFKDRJqD1Iul0tttnIeKy4QAIEjEwjmezaU5Czk/M9wvmeLruAK9mzo7Tlq13058mdL0noPW457tiTDclf7CQ33kpQNqrh+k1Xy96LayT2ucrL3qXLNhkT1LmUgdUkzUHlZmU72Rai4kUbbi5Aa+Uv95D5K8las+O+rTD2y/WQyZfNdcY4vS11qt4sz9btXP0++fWbtw4j7mXBp+9suwQW4QAAEzolA5oXuUEoW7rSgpARP5WGKevKCT4upmbsWM7t4aVERjfASVkP44xd6WCf7gMFSduHIokqHegxUqmR3UNr8gOGg7HxuVn1RMvjwyafVNCfgckB7buTe2uYubgQBEDgyAe0mlbWh6V2bjlyNSytO9gkeUy23fNMoVDDb51PeDd50QWF+MiXxdtf95+nYXA7BDWE9hB7uBYGjEiiYezxqPS6zMB2dLYFk1ee8myUS9vNgld7WsdlCVG5qnv/bMpfdQlmHZ3k8LofWFcJ6KEHcDwIgAAIgAAIGAUQF43EAARAAARAAgQYJQFgbhImsQAAEQAAEQADCimcABEAABEAABBokAGFtECayAgEQAAEQAAEIK54BEAABEAABEGiQAIS1QZjICgRAAARAAAQgrHgGQAAEQAAEQKBBAhDWBmEiKxAAARAAARCAsOIZAAEQAAEQAIEGCUBYG4SJrEAABEAABEAAwopnAARAoBIB2V/2PnWmqOzhekM35jmkuRx1msIkshH+DecjP/fvpI/7XtPLjXGwuaumfM7pfUE62QdY5csViH+PyjL/G5frKEiVU3SWrHGfao+t7tImzzzMakh+ZfWzVFu317c8Rz+Vlm3pp9J7Kj12Z5UYwnpW3YXKXhqB3EveUB4RsPIXqY+oNUltTV/LIT09kBZTJUpymDmXsRwnwhiKlV1IwzpnhU2dCM4bz/O5c/HB4DSixYpo7COumWaabPs/r3JEZrypPR9Vp/9t/nC5TV5yGP1w/odbkL5272+0nLzStGcvzSn8wkcdEh9xN/6rQIu45T/rq85JDpuPBy8qbUb4d//oczuhu99wIBLl5yg7GWBF/eQr4Pm2R+1OD9qMdCWDpyb77uC8DjhyDreCAAgcQCB/bml45mh8zqjvAdS+6Q6obHhr+kB0/Ufb3/IlZc48TR3obXymzgYd8iHu6QPZpQw5t9V9cHf6nFjz0O7sYepRXrk6+hx4HtbPcV58BMR6iL2uk+tM2+Q83Gx9V5PMYega+n5YdB6tfG49LF7Kd5+9ehAbqZcwDOvl91zo83tZyOIf94HrxXU//OluLgccdN4cS+QEAgcT0MJhvPh8DjWPXmitH1atRSH94isX9eyLMzoQPRGHRFglba3zywsO67YJq/kiT/0ei5GukzOd7cD36F5LXaJBlGKRa6BwzQrr3Fr+ZGUTZptQ2vol+ttqH6THLeFzm65H6mH2GXRknv4s9/Ivh+35CsVaeE8m+wkznishtgw2ygs4WgoI69FQoyAQKCeQH+VnLD1nFr7pyuvgShEJpAhrTixtQiN/ywiV0hQ1WPAQLU6clJO8SJ0WXGZgYa0j5+lnlTl4uixWU3hcwjrMDJpi0DZhFVCmNWeKJ6fnvIbqZ76PNNK7T7LsI6FPDeLKBxbxAEu116M/U2lswugQ1ohT+NykxiWOZ8lt9dZ//qvciTnWg53pyAAEmiKwo3+fPB82uKVk+q1HtwOevvySObSiq0cPT0OPdDXryoEociA2WwvqGi3C+UmZlxzyQdnZ+cro35up0Ra+8YsDcL4e47lNFjm+fUX8HzZIJPMhsW7H86G6nBWZs5+jP0/02S8PaNL3BipvNXcbzrH2phva2CY4RwvaZ+tbE5f1tqcProPvIepfar707S4gHkjQfM7zzHHg1Rc9fjzxc/JKmw+iZ04nU6xxn7j6wvX3hcwC8/yszKNmLhax/Fw055Oaju5NaWPJW6WJuJufB3Pu5QHdOuaYrexkfnVMtOJ7v8dG30ufGXmrMvl5/Ij6V83LWuak1d/qzweXPRYQ1jJC+BwEjkRg/SJBQBNaqRddco0e+W3x/RtGybor0xMF9khXpznrr2+af0zpNnOzCtDhSKayd6RuGw8QiEVV2he+8J7pg0Wur3N9lJekUopMZHCmUH6Rf8y/aewTIauCcfj+7ze6LwjwMQN6CiOXveEtOeAqeaEnmuWKjs4KzSMtWERo1qfxkgOPZix6HBymA5E47/6MthIs1v+hVxaW5JFxBIaVREDrgCqefc20bzm2i5JFg7NPBge5sa4+ZkO3OFnww6FU1a713xmRBIKFff+WikoP85LBHwfWyXMaP48O0ddivHEGkFWrXT41hPVQgrgfBBogIBGR6qUQOCya7Q8FDZRTN4vRwvYS2tHvtwSq9nPRwOaSGYlufrsLrdLHvo4mFmHgyuh7Q9FVL/Ewwphf8asC67E3/aA5fdI/vSbHee3+fbIFIybrgAbfY14m1KeFYeGIxZy1qsxxTU5YVL0tEbY5peH6Zy0pVcseTTcqzDlZsrT7JcZov0xvgFh6Ke9A2pI3M3BZmrF1l4mADn4GPKB7zNXBy2K11FwJNffh48ixXGp4R+FwyuuRFGs88jLYPQ7a4h7OP1oTS6+KhokgrFVoIS0ItEBARJXf1yyq7Y2gW6h2KBIWV6Fy9bFevWrLQb8Uo9eoCMuetAs4WvKi3bXJS9wtGEk7JJ8yXmv6OxvQE3tNacAWIAva4PNfqeVfKFCqbYa7OhLPSkt1eGkKu7cHPKgotY7N5TUi6qnlNmMWL/vlsjRjyzwzEBgt7AO6eharcN+GS424rcEdvYXuaqntTkZjDV/rF2Exodesix+u4IZJIzsQOAMCYs31+eW/KnNLVRzhH6Xp4UsrJQ7yNxaAAc/NZTzauSollq5psYrV6haMKu0Sq+mb3Ye85Da8+CW/eaB/8fpbYS/+aXP9bTR/pwcAZW1Isq46Pyvias8/+GFRugsHIkeyWF1cq1us4orm/jPnOcUdm50bTcURVOlVS1rlApaBmWVwAFfwgXBxOwicGQER1fFSXIbFAS1qhO/xIpL5Tp90OUxVdhMyb1YvrYDu3vQ83MsLByZ5iqpk422xrr/YGtnST9YXblojyuRPb8Yg7s2cBaNcsYmVnXcF+wYXNfywxQOnaAOOcJbQx2IVDj7zzTWqXM1iFVHlQRI76YOsG189K5ptauBQo07pW8KgKw6S8h4EHVxmeQZwBZczQgoQaJ4AvwzflB8vHeSS3s5PPteRwrEF46yJnu+0BouU1F7mIbfDJ3ooi0Cy5hMJFc8bLqVBMq/mKnBIkSEmKXwsVrUbz5gDp1YSDZrZSjFjjWQjfV3uzeY705ajK3gpn1bxj/4sg4ioL4z26eDrOdOVgRi7zicsXrJDVWSlZQZeVV3BLibeFqsa5DhENZW5DBxk/Jc8bMlOU9pTkTwX5ZHf2gUsX6PMrl+lPvaWn4Iqa3OQFgRA4MgECjY+yC3gr7lBRH4HKHcbS9OqdYXpNYrJ+spkLaZzLalevRnvDiTpknWL5Wsr+XWp18gaix3NjQq81npadywKmXjvvJTetCHFLbf20lyjG26QkUmjm+Nuf5ZR6SYb1g0fQu5V1qUKK9v60tQa3cwa19LKHfk71kJxN5Jny9qN7EEABGoS0BG1gX3dZZyndsF9PpWls1VC7n0m+igLBKrZANwGAldIAMJ6hZ2OJp8HATUHy5sy5OarUtUvmNc6j2ailiBwcQQgrBfXpWgQCIAACIDAKQkgeOmU9FE2CIAACIDAxRGAsF5cl6JBIAACIAACpyQAYT0lfZQNAiAAAiBwcQQgrBfXpWgQCIAACIDAKQlAWE9JH2WDAAiAAAhcHAEI68V1KRoEAiAAAiBwSgIQ1lPSR9kgAAIgAAIXRwDCenFdigaBAAiAAAickgCE9ZT0UTYIgAAIgMDFEYCwXlyXokEgAAIgAAKnJABhPSV9lA0CINAuAT4E++bUR4i128LmcxdmN7Yj2/js05t7et/ZipQ9q/W5vPGPOiNW7sn83fx3Qd/IXtn2emTLlzIy9ZU2tHRGrQ9wCKsPJaQBgRYJROdR3tvfWO2UrF6efDj5ujj7NuuWnMMZvngLKxO+uMsqnGmOHP5efpZtBcRXwE0xyxwaL4R272+0nLzStODc3vj8VjlANr6GNA+Sw+XlQLX4h08nzz0HofCOXecVR8IcPwsjWvBxwGOn6Jf0b9in0YCgie8hhLXCdwpJQaBJAnpEfkP9WXzMdZPZu/OSQ6nl8HB+2fF7zXq1XTfJ/5k+khfsfkUTOazaKZxyoDof8P09Jv8Xnz78PTk4u8Bykpd1mYVz6dzUYeV8ohILmslM817TX3lOsweK1xUz46nrTTfp54A/G84D428sxMGchuqQ97Qox9mMFrRfDWj2V48Ud9LxPpeIavhdUGLP5dCsX+EZcxTSwhmvyBIEQKASATlgmvb8Mql0V73E+rBs/7KOVzd1IHnZYe3qUO30IeIFx7Iz1/Sh6/WYJYeMXzQ3dcC5/YB2dUB87oByeTYivvq5ipPEB6mbaYroJ4fbK9rqWTAOSI8Pn/fLzzzc3l1qeHB8pl3q3qLD7j0eIlisPqMapAGBSyGw/kuz7YRei/x5p2zr8I76ReWP/tB8uKSvEhd2aLbQNw3otsB16d3Ua+KWhfL5zFYsW4su94aRfjkOvQLajxteWzYCbd4C2zyusjfp32foxZnMub/5T9sZhcZounahlZ2a2428QDnrOqpDOE+8+0dSzOQx7bbp3Q64vE/6Z51L9ntiIKx+nJAKBC6CgMyf8ZuEHB7gE7YxfJkObqlYB3v08DSkpY+yBj+0pSXPvZW4gOXzkrnbq+KWfQqexGW/8HpmZI5VpleVK3czDfvSMseqXLuWSwllnz6fQlfwYspTAOL+lUlUS+BUb0ob0z0c/q6meCertDs5dPUOU4OtId1lR3L9O3vdKnw7IKwVYCEpCJw3AT3nmB2hd6FN65e+sqR9rCJlUXz/sl1Tcsm8m+Wlm/1bKs7GmuU1cUsPRBLDUweP5ccfkUdA5sDdc/ZlXaU/57L7Mx4M2ebFx/ypWL7y37JrTXr8aBk+qsFWeJm/57Lc0k9QVo77cwhrfXa4EwTOjEBAP0eOk/IBJFGh46VYNX5WkU+eVdMURw5fE7d0gFAy6BDhVKG3SWDP7pdd7dGVXoqjg59cS3NsvcORvdlBkC1gSaXZFEYmq+hlDnR6HFmW4UjRZdMNqnoWS7bCQwVhrQALSUEABJolIKLKRgqLavHLstlSzdy0NXpu12m4ifitaMCiWbbqSUf1Rn1qmWMNLdNYlsMI+dRcqUrjcOU7K6Cjl/VyIa5vcEdvxrKyVLSwcvlaLNNCS9bvSYGw+nFCKhC4AAJ9urNObJ2mabLkpj8b8BKKZkU1WiqUDWjJ/zuxqAaFEU7Xwc3vKdCWpUcck5Gd3xxrssSGl1UNk3uU1TycE8fMK9c+R+06qiruanYVc9qPKDhP5mDZ8v0eG4FS0Tx+74F4up5nFdKTCkp8h0/0cEDQG4TV72lCKhA4DYF48borgrJKtXqkpydLZyerZJpOq4JPyl2AIn4q0tQzKMYsRAUSFQQ5jRaOzQhy860i6D5u3uvgVqvTvdyqlpxV0JHN9S/iKPPtiZWr5nk5Krhf+FyF9xELcBw0FZZrlBXwXEji9mf39uuEs35OdpPi5/eZLd7JaxR4xSt4xZouM9GzTfRYkoMkIAACLRDIrdWL1+1FawmTNXt+6/I8KhmvLyxOW143+/1eawDVekljjaJ1vaKrfpn1kh5NLkxiWbtpTX8N3Bz94lq7m+7r5FlVa17DPp2s/Nadyj2+a4Rz34Wo3qVrT/Wa7Oxy3Oyznv686rpv/fSIaY0LBECgkwRaENZ9w8KU4VblBVkLeaUNIjIlOIQjt++BtWJXwK1ggwiFRLE3B0TJ5htpMTUBajFL35ff+MHruTH6LxbhsE72PrSU7dfZRgP8BgbZR+ZGqSsuEACBThLQQSoSylvPbWptlNrGjWq5YYshiTvumeij2TnTpEzt7pM1jptTbHABbp38jrRaKenzt7u8e7mkUAhrq72CzEGgmwS0YEvg0OmWuFQjUzCHVi2jg1KD20H4ruZmCOvVdDUaCgIgAAIgcAwCiAo+BmWUAQIgAAIgcDUEIKxX09VoKAiAAAiAwDEIQFiPQRllgAAIgAAIXA0BCOvVdDUaCgIgAAIgcAwCENZjUEYZIAACIAACV0MAwno1XY2GggAIgAAIHIMAhPUYlFEGCIAACIDA1RCAsF5NV6OhIAACIAACxyAAYT0GZZQBAiAAAiBwNQQgrFfT1WgoCIAACIDAMQhAWI9BGWWAQAEBOe/x/t08I1X2xS07A1KnKTwmMj7LlfO6fyddwppebjzOdlXnqrrTyZ656uBwrkD8u/w7+xOX6wDgeX6rrjpviG6tk7Sp/AzYXA0kv7L6Waqt2+tbnqOfSsu29FPpPfiadYUAhLUrPYF6XCmBNX0th/T0QFpMlTDJQc+MYznOCZVdSEMhzoqanBA9WREf92Uc3DyixYpo7COumR4xBbT/8ypHTtJ+MVKp+Bgv/W/zh8tt8pIDzofzP6RLTK7d+xstJ698aLm9NKfwCx91gLZlQKBAi7jlP9OnDSUHcacHE5nByO4ffW4ndPcbDkSi/BxlJwOsqJ98BTzTdnNQxWWmB25N9oq93LJzwaM+aaNe6mDyuN/K+PkMYmvwqnUmIm4CARBohIDtYHCvw8Kz56qmDuI2zg5VZ1gO+XDnIFVfKUPOtHQfaJ4+Q9M8hDp70HSUVw6Iz+HgYf24Ku6r8ABu13mfyVmh2fquJslncaFSRtFZnfK59SBtKT86mD7fhIPYRGeghvXyey6ic1ONNob8fA8Sr/1ge/SleW4ry5X34ea+dRJGZjfq59vS3+lvw34+bLYuOOjct8eQDgQaJ6BFIf3C06JY9BLMvpzYjGOZ5SsWh0RYJW3ls52jvByCYRNWeUlaf2Ix0nVyprPdb7YrU5foYGzFItfA9OHUur5za/mTlU2YbUJp65fob6t9YB0YFByS7TPoyDxvWe72xzHknGHiLcq1n/Hy5zadte3Zr1146aCs9DugDkx3D5Cq1gzCWpUY0oNAQwQigRQRzYmlp1CpF4Z6KXiIFidOyklG8U4LziJmuXI4Tz+rzLCiTX4uK8cUHpUm/dJTwjoUa8T2MrQJq4ASVBEn8z5Oz3lJfqZV6t0nWfbRWzz1si4fWMSDKYeFXtzHYX+G9+bHGvKMlFluBzzYlYWpY8Ka9QAdgEJuxRxrDfc5bgGBgwnwHNj4e07zcBpytAjnJ2VecjgnNoDyc5byt82UUlOJXxyA8/UYp2WR49tXxP+hyUQyHxLrdjwfqstZkTn7OfrzRJ/98oAmfW+g8lZzt+Eca2+6oY1tgnO0yNf3YHBGBk8fXAffg9q/1Hzp211APJCg+ZznmePAqy96/HgiGrzS5oPomdPJHGHcJ66+cP1dzTvz/KzMo2YuFjxrv6amo3tT2ljyVmki7ubnwZx7eUC38YMxpLt+puD+Hadp75L5b5o85ua/2yvRJ2eeP32e0ZaZhaEABTf16OFpSMsvmVs//IKwHs4QOYBAZQLrr2+af0zpNnOnCtDhSCZHHE6cev2iA5yWxKIqbw0VXXtDz/TBIhe+VR9Z2PZKKXQwhysCll/kH/NvGvtEyKpgHK7G9xvdFwT4mAE9ZYEsfvCWHHCVBKUkmuWKjjaFRkp4pAULEM36NF5y4NGMhYCDw3QgEufd5xewBIv1f+iVRSt5ETsCw0oioHVAFc++Zhq3HFsCpTgviwZnnwwOchPtyoZucbLgh0Opwsv8PQd2Sz+BH+1qqXb0++2oW7WMGkht9lefPp84qK5cVVW5vdsBP9e/YfT8YVWBsB7GD3eDQC0Co8XGEsWqX1Bbfvnnlq0YwihRj293oVX62NfRxCIMXBN9byi66iUeRhjzK36VtXaNmvemHzSnT/pnrvqxtGz375ONYLF9BjT4HnO0aZ8WhvUkFnPWqjLfazlhUfW2RNjmlIbrb5STWHg9mm5UmHMS+br7JcZov0xvgFh6Ke9A2pI3M3BZmspql59MBHTwM6DV4jFXBy+L1cZdhJr78HHkWC41vKOskZrPxmLJ1np6szcF9BMreyMZHpCJPA+JV+CDh5ryXWpmcOdfLQirPyukBIGWCaRfCvFLW7n6WK9etRtYXJSxVcp/kReJdgFHS160uzZ5ibsFI2mQ5GMTe7PJa/o7G9ATe01pwBYgC9rg81+lEX5OWFTbDHe1Q6iKwfPSFHZvD3hQUfoCNZfXiKinltuMWbzsl8vSjAdAmYHAaGF3UdezWIX7NlxqxG0N7ujNEIudjMaiS7l8LZZpoSXb8mN9wuxlmkLGPE25eH2bAmH1JYV0INA2gdCdmxIH+RsLwIDn5so8Womla1qsYrW6BaNKk8S9+c3rSHnJbXjxS37zQP/i9bc32rWaWn8bzd3qAUBZG5Ksq87Pirja8w/YnBpGk45HslhdXKtbrOLa5P7jen9E89gyB8sDku+xMS8+uNXTB70H4qlC9mimXQ9KfIdP9FA2x1DlgUjUnO7anMCtVafT3gRhPS1/lA4ChtEoQSsB3b3pebiXFw5M8hRVycTbYl1/sWVmsWpCYVdWGJdLmc0YxL35mgtSSlvZeVewb3BRww9C7BqNNuAIFcXHYhUOPvPNNapczWIVUeVBEjvpg6wbXwU4abapgYN4MF4nPCXwTPFmXtyeZx7wRB4PZ7Wr7IKVyqRHenqyZB6hBq/4Fq+65d3kshGF2ifFNjedqY8KwIoGKIfUle+FsB4IELeDQLMEIqHiecOlOCZlXs1VQnrOzMdiVTvejDlwaiUWT2ZHnkw0ajbS1+XebLb9rtxcwUv59DIPHE/5ySAistSM9ung6znTlblbdp1PWLxkh6pVOBDIvGCruoJdrfC2WJWQOEQ1lbkMHEQPDFOUo7F1nFYYKOU5OFPcalq1o0cWc49pgWQXLO1FSZ7Z4qh0v7olbvLIRd/nqQuZmy/3lDQcgHXgch3cDgIgcACBaKMDZxZqfWB6/aFtLaZzLalevRnvDpTemaZ8bSW/+/QaWWNhpLlRgddaT+uORWGLPXbrURtfODaICBenZtbxmmt0ww0yMmt9dXPc7U+a61h/m+0w64YPIfcq61KFVVhX+6YGlg0tSnc/8HtAS5/Fwmw8OflVJZfqsLp5FFp5HW5xnjfy8XFGnCgFBEAABECgmwTE7fxM9FEWwFZQe9mfeExsITbt/m+gboXQtctdluZY12PX6DAIaw1ouAUEQAAEQMDihuepBu1+bVpc26JdMI99QJEQ1gPg4VYQAAEQAAEQyBJA8BKeCRAAARAAARBokACEtUGYyAoEQAAEQAAEIKx4BkAABEAABECgQQIQ1gZhIisQAAEQAAEQgLDiGQABEAABEACBBglAWBuEiaxAAARAAARAAMKKZwAEQAAEQAAEGiQAYW0QJrICARAAARAAAQgrngEQAAEQAAEQaJAAhLVBmMgKBEAABEAABCCseAZA4NQEZPPy1Onmp67QGZQvzG5sR43JmZz3yVmkqabIvrDhUWpy5qz8qHNX5Z7M381/F/TN+kXuKz7yTFchf1YoSRtaOve1Tg9KW+7jQ1wlh5BX4bOp0xQmUX1l8nbwsFVaHZ/n5hsfQ8cVSI6ks/RlGWev8179qUJY/VkhJQi0QkAOWB7e9ZvLO3yRlWl19CJKv0ybqUbuJefxcq4yuFDMMgexKyl4f6Pl5JVy57EbzYrPRJVDWeNrSPNgT3LYV+6HD/N0vbTlEG0+OJfGLmGO281nhfIRu2On6Jdzb7O/RPi/lkN6eiBj8MHnwcrBtstxIoxhO+3daRm4SHp10viK9nLe7euUj2KXK+LhMyhJszH7ov/zqvsrPHB1OA/y/Zfq53LOTaSAsDZBEXmAQG0C+oDl5MDnAssptrAKCpORtxxkziLhOtxZW1k3fApJfBx47drbbpT8n+nDeMGtaCIvZ6e4yuHufNj49zhjMVlyV5bFDcm72mSmBwdr+ittygmBy4L1b3Zvukm3h2/NvcT5dHE+N1YdrB2Ls9kJfAD5fjWg2d+1KngnHe9xtd1fqi4yIFGHnEtf6PrzubvSSAosgw37s8X3vqoT5MN7uE85CzWQ+fOrnkuxguNLHcj+TW/cd05rkw9p3xoDF+nnqC9U/bp6eRwBiyQgAAKtEZCDq9MHmdcvSh82zS98zyz0odn+6T2ztSRTh6NnDiu3nGZdnqbg0HN16Hru0G+Tb+Yw7vhwct8+SA6MV8ekqzaFB8HLf+MD3f3yMw+M9yPbVn/Z8i1/lnKH3Eftlz5S/ZDwlrS1zmO39HfEKssv1x/WvnEfbp/qS+u9fr0kqWCxdnXEg3pdB4HdL33TgG61f+ywa/2XXXcTei3ygx5WwmF3D++o0OE9+sMWzpK+tEFX7fp8ZiuWrUWXmW7kthyHXgHtxw2vLc36Nm+By1W5o3+focU/mSvLjE1oCo3RdN1DKzueZwzdqcpjYHGz6nSHW9m+ANcvY7YJ9RVZxzc32g3s9KTwnGV/IZatYZW+/lBf6i5WpmqXzkN4C+qYO3suknKSdq5f/NqcsuAjfqE3xNcVHE8HRNa48jZYpgNqupEhrL5PH9KBQBsEgp+Uqyv78k39u2TSVOYdafLIs1ddu0IRGtyG82uu+vXo4WlIyzrK+iSuZ7/DteWlKu9L9RLeRHN+lpeqetlaLiWUffp8CufzFtPQfSqTqBZx6E1pY3Gnqne2zD1mP1PlNjTYKnsUeD5+/M0Dg3C6eaTEkn80IKsbWH0ecwsL+OIApa/HuC3iph3OV9oVPJHMDb48+NHl8BSBUb/Rnyf67JfPuep7taDH/DhPcRFvbINKccFn61vG5cDPIawHAsTtIHAQAfnS2wJmMn8rHzjrudrJY/dkdf0iloufNdm7HRB9/5ozcRa86WChxPB0RahGIqXnDz2M2oIu5bLVvJ/NmhPLTyzfxAJ0ZyTBQo7+UoOt41zrL56P/5jSbaY4FRzGkUxljhTdtxK+xaIqYEPrXObYN9PQP/Eoz/gH0XM2MjhTKA9APnjOdVwWwSu37f6Rchh8v9G9GnCWRHazJV0WzNckcQhrkzSRFwi0SKA4cjign2O9jSu0UYJSxhxtOg/8rEm/rNMBQsmgQ4RThd4mQVDK1R5d6aU42s3p537UOXAkq9W6zAQsqTSbwshkFSzE9trjyLIMR4oqc5v7gSpNNVrY6lkSUBcKn7hk3+5Cq/Sxr6OJU4OOxBUcuYV5KEGrAuuxN/2gOX3SPyPGydaI3b9PZiQm64AGKuitn+obFdiU8QaYA6rYLR1Fc6t6W6YDUtMFpTjjBBBWf1ZICQInIqBfdOd2iajy+4pFtVhkmm2XiN+KBiyaZRaKno+L6mZ5qYYiEctyGE2dcs9nolb9XPc6elkvF+L6Bnf0ZlhUvtHCzXIzc0sig1PelNA1Hi2ZEZdsbJWybSveAO0Cjpa8GPOvarCRdv3a6y/5lD0vwm9AT0+iq4+04MHU4PNfiZcjXRrmWNt7epAzCJyMQBK8UbK8xrCoBoURTn2669DqA2lfn19+qxLLrZ0O0JZlNZev3xxrWjSSe5TVbMxJupeCiLuaXcWc9iOaD5Q5WBat77Exv1g6H90OOZVr6M5NDUzkbzyIGPD8dBnXJODJtFjlOfdxkZe3S6z9bx6U8JLb8OL+3jzQP2Pzj3xgWMS24nRAzflZWKzl/YgUINA4gThIpHR+VUbvPm7eHunpyRIf2iEt8dydRkRVReh6BhOZVVIBWE2LSl23qgo6srmwRRxFNBIrV3kMOSq4X+haDu9jZ2eQdYcaZQXs029kwxDP/so9EqouAd296UHfywsHJnmKquTlbbGuv9Sc9E+QqYEZRa1cHmLZJ1fwM7BEvqet7LwruMmpiPIvEYS1nBFSgMBpCah5QpmPK67G6HFCWw+XWLIYX1sQiYVRHJEp81pbtYlAQT34pfjm2o2oNCjFNwDLFbyUr5eqs6O6UbvLXMb52x2u0qK51TCSeGYT1VQBOqjJ9E602l/OrozayHPWS+nQoudvSObGYT4Wq2qTbGSyEks9s5ViJoo6G+k7WhxXJGt9+f2XvCIlCIBA6wTUgnhj04Hwd7/F9ZkNEBqurCzyb3UzCdmwoWwTiYINIlRzVR4mv2TzDXNDgzRPvUFC+r78xg9e7Tf6L2YV1sneh5ay/Tq7tHe96hvmUppWtSG9kUnCc7KX7SCiTTPcz0iywYZs5pA0s8KmDQYbc4OI3GYVtv6MN/Cw7mDC37umNmrZ72+kiFqKjJtAAAS6R0D2CR5TLTdscWPEjflM9FEWWFIXiXaTytpQ61rEutle7X1t99fVgvVqOITVCxMSgcD5ENDRuBI4dAYuM4W1YO7xfLCjpiAQE4Cw4mEAARAAARAAgQYJIHipQZjICgRAAARAAAQgrHgGQAAEQAAEQKBBAhDWBmEiKxAAARAAARCAsOIZAAEQAAEQAIEGCUBYG4SJrEAABEAABEAAwopnAARAAARAAAQaJABhbRAmsgIBEAABEAABCCueARAAARAAARBokACEtUGYyAoEQAAEQAAEIKx4BkAABEAABECgQQIQ1gZhIisQqExANs2/sR3XtqaXwrM9HSVJfqXHs+Xv1UeT3dO713Gusrcvn9O5zuRTWra0KdPW0nsqEz3sBucZpjX6o2bb0BeHdWEn7i49ewgJQAAEWiPgOq7LPBLLVrj6vOioM9tn6sitkiPSrHkmx4KFZ4PxEVuT/dyzDqljxLLHj8m/i47zyjQ+anerx9epo9+MI8Sy/3bUqVJ/oC9yj3XTfdt0flVeAlQlMdKCAAg0RMBx7qoWDJf4JS/7rPCuJpazJKWMorM95XOrqCXnZrpE3SpsviIp6cJ6qXZ4CGv2vM3mhbXCmaCZM2PRF/LM1r+a7tum86vTMriCO+E3QCWuk8CEj3bby+BW/fALQV3rlzEtJ6v47/rzFYUfG6h+lUv25uaGxsstzfr695e1uC359/6Mtsux+pvV3dx7oCea0XPK/ytu3jF9zx+pb3ULr+nvjOjpoVe/y0YL2i9Gyf2DWyrLbbSIONk41K9K9k7W+wz3zL+DOfFB9JYLfVG3F5ru26bzq9MuCGsdargHBNoi8PnMIsmCawqPs6xbmm4SQSaWXhHqxWhECxHiITs01c+cgvBs1vWLFl/906fZlmg761v+NqZ+KNQqbTShuv6iJQ3oVimhnmuN8xsvJTPqx/nf0H0k2mru0ixb/96XCsTin/3cd863rc6oki/6wk3LMrdeBW0ubdfzI4KwHtTBuBkEGibw9MEWk+8B5V/KMn27C9jaHdJ8TjRmAdTBL1/0+PFENHilzQfRs7JkiZLRfIllZljSymJWQs8vNBHPzOWy8iILXCXvTWmTzTOy0nPWOZenLMNIwBtm3Ep26ItWsJ5pphDWM+04VPsSCCxpbFhxiWY5om5zQvNICxYg9gFrV/CMRY+tP2UFsl05jlzB/R96VZZsxCxjaVosydgKNSKMd+9v7KKe5FzSy3HeEtXu6bI+WtMXp5k8Gm7h6Jbgh6QVx75cbYl5CFNrpdAXx+6rLpcHYe1y76BuF07APsfK5h27eFdsfpqu1F/6dtFQrt7QAhVLz/y3dW5WZ1Q6n5gyOYmCnwG7qB9ztfCyWC11V0LNMv04crj2hnfUP/ITUMrEOccaVhR9oUGkXP8cMyADPWMAl1uqVdbPXc8vU38Ia1mH4nMQOAkBPU86YGu09CVkzmuKRZWa55SXmv0qtc4yJudoYXdR17NYJQhqywHBf2jE/1sEd/QWuqvVe/nXOYxoqTdkMGNa9RJExpZ4dk2wcmkXuOrRF7p/Uq5/CThLDyK9QgjMnu56fhDWlr6XyBYEGicg4pp+2UdFBD8sSnehPXckK8nVvOoWq448XnK9P6ZhPLC8ONka/B4bG0h4RAs3hVzNS6sRTLIRhMxHB0+f1DfF1bLpA/qiqV64nHxgsV5OX6Ill04gdo3K3OQwWfLiYyWJK63Gjkw+SKtZrCKqHI1M7L7eTNPLbAxrMCVWPpWQNGoXK8fSoqI8mM3zjGj+Jz/X25tuaB/WU1mwX49abOMdpNAXvt1zVenqLH7FPSAAAgcSKNwgIp93aiMFx0YMehen+Z7dbrzFBG94MJnvA06r9mJIbRZRYTOE3OYN5uYROh/XHhS5XaWiNpduCKE3yDDzde80Fe0KJffoTTLKdq1K0w1ZxIUl+djSRcniMtAXxg5gmR26PL8i5X3rmVGYrOn8qpWuU2PnpTrUcA8IHEpAiUz6RZQSIrX1Hxk/yc5Kkk7viJdOo1/6btFMhKpYEOOmWUUjFFbHwCBd57D+IqRhXe0ibNlpqmjHKCv7usKazyy7c0/cJsuAAH1x6BfhMu+/UeqKCwRAAATOnIDMk+qlRhIo47sW+Mwbjep3kgCEtZPdgkqBAAiAAAicKwEEL51rz6HeIAACIAACnSQAYe1kt6BSIAACIAAC50oAwnquPYd6gwAIgAAIdJIAhLWT3YJKgQAIgAAInCsBCOu59hzqDQIgAAIg0EkCENZOdgsqBQIgAAIgcK4EIKzn2nOoNwiAAAiAQCcJQFg72S2oFAiAAAiAwLkSgLCea8+h3iAAAiAAAp0kAGHtZLegUiAAAiAAAudKAMJ6rj2HeoMACIAACHSSAIS1k92CSoEACIAACJwrAQjrufYc6n0xBORUFjmg+/59d3ib4sO+5cDvZvJsrH6ZuulDyW/oZX14s5EDCHSJAIS1S72BulwVgfWLFhZ91FkDlwjX+Jv4sG85Z5n4xG+iWb+2YDdeP9XEYVI/fR40LUYNtB1ZgECHCEBYO9QZqMp1ERgtQgHcr/gE0UOvHb2/Lfko0lea9sK8elP6mA9p+/mP6tjCzdbv0PbhfhA4HwIQ1vPpK9T06gms6eXmhaye090/+mTDd/KYNv96twNiZaV/VmUtyO/qWQMACNQnAGGtzw53gkDHCAzprp+pUv+Ona8tXrt3ug/nSqM50+S/95SfNt6yd1q7wDG/2mK/IOuTEoCwnhQ/CgeBhggEP+Seqd3ST9BQOdls2N28CedK1bxu6meTuKXlvtEi9XnAburlGMFLLfUMsj0hAQjrCeGjaBAoJZCyCMe05P+NDQvRL6LWsGQbya+01l4JetMNrXhyefn2XmsO2KsQJAKBExCAsJ4AOooEAW8CKYtQgpwmtDKswjiiVrl8LZZp1pL1zc+3gpVdwemM+3etOqp9W4F0INAoAQhroziRGQiciEDvgZ5Yo75/01FKu99vXuHyRA9RpHDT1aviCraUHfywA3twS21Vr+nmIj8Q8CEAYfWhhDQg0HkCPZq+Tmg7e04ChtiafOY1spPXaSeEa/2SDmaSjSfGS17X+seIZI43kXBEP3e+H1BBECC64WCDPUCAAAgcn4AIi31zCHH3LqjOvgnZPCer+hswNF8/Wd4j88TRlW2nfP5Gd8GGHv4xm59X2mP3iOM/mCjxYAIQ1oMRIgMQAIFmCEBYm+GIXE5NAMJ66h5A+SAAAjGBxEqub7UDJwicmgCE9dQ9gPJBAARAAAQuigCCly6qO9EYEAABEACBUxOAsJ66B1A+CIAACIDARRGAsF5Ud6IxIAACIAACpyYAYT11D6B8EAABEACBiyIAYb2o7kRjQAAEQAAETk3g/wcL+op6ZuAP8QAAAABJRU5ErkJggg==" alt=" " />

 

Data Constraint

10%的数据,n<=10(来自题目的馈赠).
30%的数据,n<=1000.
100%的数据,0<n<=100000,0<m<=100000,0<z<=10,0<q[i]<=100.
 

Hint

题目保证z=1

貌似是标程出了锅, 只有z=1的情况23333.

所以找x的中位数, y的中位数作为答案, 就完了。


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
inline int read() {
int res=;char c=getchar();bool f=;
while(!isdigit(c)) {if(c=='-')f=;c=getchar();}
while(isdigit(c))res=(res<<)+(res<<)+(c^),c=getchar();
return f?-res:res;
}
int n, m , z;
int x[], y[], q[];
long long ans;
int ansx, ansy; int main()
{
freopen("shuru.in", "r", stdin);
freopen("shuru.out", "w", stdout);
n = read(), m = read(), z = read();
for (register int i = ; i <= m ; i ++) x[i] = read(), y[i] = read(), ans += (q[i] = read());
sort(x + , x + + m);
sort(y + , y + + m);
ansx = x[(m+)/], ansy = y[(m+)/];
for (register int i = ; i <= m ; i ++)
ans += abs(ansx - x[i]) + abs(ansy - y[i]);
printf("%lld\n%d %d\n", ans, ansx, ansy);
return ;
}

[JZOJ5775]【NOIP2008模拟】农夫约的假期的更多相关文章

  1. JZOJ 5775. 【NOIP2008模拟】农夫约的假期

    5775. [NOIP2008模拟]农夫约的假期 (File IO): input:shuru.in output:shuru.out Time Limits: 1000 ms  Memory Lim ...

  2. [jzoj 5775]【NOIP2008模拟】农夫约的假期 (前缀和+递推)

    传送门 Description 在某国有一个叫农夫约的人,他养了很多羊,其中有两头名叫mm和hh,他们的歌声十分好听,被当地人称为"魔音"······ 农夫约也有自己的假期呀!他要 ...

  3. JZOJ 5777. 【NOIP2008模拟】小x玩游戏

    5777. [NOIP2008模拟]小x玩游戏 (File IO): input:game.in output:game.out Time Limits: 1000 ms  Memory Limits ...

  4. JZOJ 5809. 【NOIP2008模拟】数羊

    5809. [NOIP2008模拟]数羊 (File IO): input:sheep.in output:sheep.out Time Limits: 1000 ms  Memory Limits: ...

  5. JZOJ 5793. 【NOIP2008模拟】小S练跑步

    5793. [NOIP2008模拟]小S练跑步 (File IO): input:run.in output:run.out Time Limits: 2000 ms  Memory Limits:  ...

  6. JZOJ 5791. 【NOIP2008模拟】阶乘

    5791. [NOIP2008模拟]阶乘 (File IO): input:factorial.in output:factorial.out Time Limits: 1000 ms  Memory ...

  7. JZOJ 5776. 【NOIP2008模拟】小x游世界树

    5776. [NOIP2008模拟]小x游世界树 (File IO): input:yggdrasil.in output:yggdrasil.out Time Limits: 1500 ms  Me ...

  8. JZOJ 5773. 【NOIP2008模拟】简单数学题

    5773. [NOIP2008模拟]简单数学题 (File IO): input:math.in output:math.out Time Limits: 1000 ms  Memory Limits ...

  9. JZOJ 5771. 【NOIP2008模拟】遨游

    5771. [NOIP2008模拟]遨游 (File IO): input:trip.in output:trip.out Time Limits: 2000 ms  Memory Limits: 2 ...

随机推荐

  1. Winform中设置Dialog的显示位置居中

    场景 点击按钮使窗体以Dialog的方式显示,即弹窗. //声明窗体对象 ChartOption chartOption = new ChartOption(); //显示Dialog chartOp ...

  2. Winform中实现读取xml配置文件并动态配置ZedGraph的RadioGroup的选项

    场景 Winform中对ZedGraph的RadioGroup进行数据源绑定,即通过代码添加选项: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/ ...

  3. springMvc 注解@JsonFormat 日期格式化

    1:一定要加入依赖,否则不生效: <!--日期格式化依赖--> <dependency> <groupId>com.fasterxml.jackson.core&l ...

  4. Java后端面试经验总结分享(一)

    今天下午两点的时候,我去面了一家招Java开发的公司,本人工作经验2年多一丢丢. 跟大部分公司类似,先做一份笔试题,题目都比较简单,基本都写完了.我把题目以及答案列在下面一下,给自己做一下总结的,也分 ...

  5. ElasticSearch实战系列二: ElasticSearch的DSL语句使用教程---图文详解

    前言 在上一篇中介绍了ElasticSearch集群和kinaba的安装教程,本篇文章就来讲解下 ElasticSearch的DSL语句使用. ElasticSearch DSL 介绍 Elastic ...

  6. Java 集合转换(数组、List、Set、Map相互转换)

    package com.example.test; import java.util.ArrayList; import java.util.Arrays; import java.util.Hash ...

  7. ASP.NET Core 3.0 使用gRPC

    一.简介 gRPC 是一个由Google开源的,跨语言的,高性能的远程过程调用(RPC)框架. gRPC使客户端和服务端应用程序可以透明地进行通信,并简化了连接系统的构建.它使用HTTP/2作为通信协 ...

  8. vue入门之创建第一个实例,挂载点、模板和实例之间的关系

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. 月光宝盒之时间魔法--java时间的前生今世

    月光宝盒花絮 “曾经有一份真诚的爱情摆在我的面前,但是我没有珍惜,等到了失去的时候才后悔莫及,尘世间最痛苦的事莫过于此.如果可以给我一个机会再来一次的话,我会跟那个女孩子说我爱她,如果非要把这份爱加上 ...

  10. jenkins自动化部署项目9 --定时构建

    举几个例子:每隔5分钟构建一次H/5 * * * * 每两小时构建一次H H/2 * * * 每天中午12点定时构建一次H 12 * * * 每天下午18点定时构建一次H 18 * * * 在每个小时 ...