题目链接

传送门

题目

思路

首先我们对\(\int_{0}^{\infty}\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx\)进行裂项相消:

\[\begin{aligned}
&\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}&\\
=&\frac{1}{(a_1^2+x^2)(a_2^2+x^2)}\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\
=&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}-\frac{1}{a_2^2+x^2})\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\
=&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}\times\frac{1}{a_3^2+x^2}-\frac{1}{a_2^2+x^2}\times\frac{1}{a_3^2+x^2})\times\frac{1}{\prod\limits_{i=4}^{n}(a_i^2+x^2)}&\\
=&\dots&
\end{aligned}
\]

依次裂项相消,然后看系数的规律,可以手动推\(n=2,3\)的系数看规律,也可以计算,比赛的时候我\(n=3\)推到一半队友看到式子和我说这个他学过然后把系数告诉我就\(A\)了(队友\(txdy\))。

每个\(\frac{1}{a_i^2+x^2}\)的系数为\(\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)}\),因此最后题目要求的式子久变成了下式:

\[\begin{aligned}
&\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)}\int_0^{\infty}\frac{1}{a_i^2+x^2}dx&\\
=&\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i^2}\int_0^{\infty}\frac{1}{1+(\frac{x}{a_i})^2}dx&\\
=&\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i}\int_0^{\infty}\frac{1}{1+(\frac{x}{a_i})^2}d\frac{x}{a_i}&
\end{aligned}
\]

积分符号里面的东西就是题目给的式子得到\(\frac{\pi}{2}\),因此最后答案为

\[\begin{aligned}
&\sum\limits_{i=1}^{n}\frac{1}{2\times\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i}
\end{aligned}
\]

代码实现如下

#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std; typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL; #define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0) const double eps = 1e-8;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL; int n;
int a[maxn], inv[maxn], cnt[maxn]; LL qpow(LL x, int n) {
LL res = 1;
while(n) {
if(n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
} int main() {
int tmp = qpow(2, mod - 2);
while(~scanf("%d", &n)) {
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
}
for(int i = 1; i <= n; ++i) {
cnt[i] = 1;
for(int j = 1; j <= n; ++j) {
if(i == j) continue;
cnt[i] = 1LL * cnt[i] * ((1LL * a[j] * a[j] % mod - 1LL * a[i]* a[i] % mod) % mod + mod) % mod;
}
cnt[i] = qpow(cnt[i], mod - 2);
cnt[i] = 1LL * cnt[i] * qpow(a[i], mod - 2) % mod;
cnt[i] = 1LL * cnt[i] * tmp % mod;
}
LL ans = 0;
for(int i = 1; i <= n; ++i) {
ans = ((ans + cnt[i]) % mod + mod) % mod;
}
printf("%lld\n", ans);
}
return 0;
}

2019年牛客多校第一场 B题 Integration 数学的更多相关文章

  1. 2019年牛客多校第一场B题Integration 数学

    2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...

  2. 2019年牛客多校第一场 I题Points Division 线段树+DP

    题目链接 传送门 题意 给你\(n\)个点,每个点的坐标为\((x_i,y_i)\),有两个权值\(a_i,b_i\). 现在要你将它分成\(\mathbb{A},\mathbb{B}\)两部分,使得 ...

  3. 2019年牛客多校第一场 H题XOR 线性基

    题目链接 传送门 题意 求\(n\)个数中子集内所有数异或为\(0\)的子集大小之和. 思路 对于子集大小我们不好维护,因此我们可以转换思路变成求每个数的贡献. 首先我们将所有数的线性基的基底\(b\ ...

  4. 2019年牛客多校第一场 C题Euclidean Distance 暴力+数学

    题目链接 传送门 题意 给你\(n\)个数\(a_i\),要你在满足下面条件下使得\(\sum\limits_{i=1}^{n}(a_i-p_i)^2\)最小(题目给的\(m\)只是为了将\(a_i\ ...

  5. 2019年牛客多校第一场 E题 ABBA DP

    题目链接 传送门 思路 首先我们知道\('A'\)在放了\(n\)个位置里面是没有约束的,\('B'\)在放了\(m\)个位置里面也是没有约束的,其他情况见下面情况讨论. \(dp[i][j]\)表示 ...

  6. Cutting Bamboos(2019年牛客多校第九场H题+二分+主席树)

    题目链接 传送门 题意 有\(n\)棵竹子,然后有\(q\)次操作,每次操作给你\(l,r,x,y\),表示对\([l,r]\)区间的竹子砍\(y\)次,每次砍伐的长度和相等(自己定砍伐的高度\(le ...

  7. 2019年牛客多校第二场 F题Partition problem 爆搜

    题目链接 传送门 题意 总共有\(2n\)个人,任意两个人之间会有一个竞争值\(w_{ij}\),现在要你将其平分成两堆,使得\(\sum\limits_{i=1,i\in\mathbb{A}}^{n ...

  8. MAZE(2019年牛客多校第二场E题+线段树+矩阵乘法)

    题目链接 传送门 题意 在一张\(n\times m\)的矩阵里面,你每次可以往左右和下三个方向移动(不能回到上一次所在的格子),\(1\)表示这个位置是墙,\(0\)为空地. 现在有\(q\)次操作 ...

  9. Kth Minimum Clique(2019年牛客多校第二场D题+k小团+bitset)

    目录 题目链接 题意 思路 代码 题目链接 传送门 题意 找第\(k\)小团. 思路 用\(bitset\)来标记每个结点与哪些结点直接有边,然后进行\(bfs\),在判断新加入的点与现在有的点是否都 ...

随机推荐

  1. the license has been canceled

    ideal 的 注册码并没有失效,却显示这个信息 the license has been canceled 如果用的是Windows系统,在hosts文件添加下边的ip及映射 0.0.0.0 acc ...

  2. vim中 E212:无法打开并写入文件的解决办法

    很简单,就是用管理员身份打开这个文件 不要被网上的一些乱七八糟的迷惑了 sudo vim ....... 解决了问题请点个赞,谢谢

  3. unc路径

    1.什么是UNC路径?UNC路径就是类似\\softer这样的形式的网络路径.UNC为网络(主要指局域网)上资源的完整 Windows 2000 名称.格式: \\servername\sharena ...

  4. vscode vue开发环境搭建

    以前仅了解过VUE但没有真正上手过,现在因为工作需要准备再近几个月里系统的学习一下这款超火的前端框架,希望大佬们指教. ---------------------------------------- ...

  5. 【Python】Django 的邮件引擎用法详解!!(调用163邮箱为例)

    1. send_mall()方法介绍 位置: 在django.core.mail模块提供了send_mail()来发送邮件. 方法参数: send_mail(subject, message, fro ...

  6. 一道看似简单的go程序的深入分析

    先上代码: func main() { var a [10]int for i := 0; i < 10; i++ { go func(i int) { for { a[i]++ } }(i) ...

  7. Java集合系列(四):HashMap、Hashtable、LinkedHashMap、TreeMap的使用方法及区别

    本篇博客主要讲解Map接口的4个实现类HashMap.Hashtable.LinkedHashMap.TreeMap的使用方法以及三者之间的区别. 注意:本文中代码使用的JDK版本为1.8.0_191 ...

  8. javaweb入门-----jsp概念

    jsp是什么? JSP:Java Server Pages java服务器端页面 *可以理解为 一个特殊的页面,其中既可以直接定义html标签,又可以定义java代码 *用于简化书写 <% %& ...

  9. 微信公众平台注册及AppID和AppSecret的获取

    一.注册公众平台 1.入口 浏览器搜索“微信公众平台”,进入官网,点右上角立即注册. 2.选择账号类型 注册前需要选择一个账号类型,共有4个账号类型可以选择,每种类型能提供不同的功能,功能区别见下图. ...

  10. Go orm框架gorm学习

    之前咱们学习过原生的Go连接MYSQL的方法,使用Go自带的"database/sql"数据库连接api,"github.com/go-sql-driver/mysql& ...