2019年牛客多校第一场 B题 Integration 数学
题目链接
题目
思路
首先我们对\(\int_{0}^{\infty}\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}dx\)进行裂项相消:
&\frac{1}{\prod\limits_{i=1}^{n}(a_i^2+x^2)}&\\
=&\frac{1}{(a_1^2+x^2)(a_2^2+x^2)}\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\
=&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}-\frac{1}{a_2^2+x^2})\times\frac{1}{\prod\limits_{i=3}^{n}(a_i^2+x^2)}&\\
=&\frac{1}{a_2^2-a_1^2}\times(\frac{1}{a_1^2+x^2}\times\frac{1}{a_3^2+x^2}-\frac{1}{a_2^2+x^2}\times\frac{1}{a_3^2+x^2})\times\frac{1}{\prod\limits_{i=4}^{n}(a_i^2+x^2)}&\\
=&\dots&
\end{aligned}
\]
依次裂项相消,然后看系数的规律,可以手动推\(n=2,3\)的系数看规律,也可以计算,比赛的时候我\(n=3\)推到一半队友看到式子和我说这个他学过然后把系数告诉我就\(A\)了(队友\(txdy\))。
每个\(\frac{1}{a_i^2+x^2}\)的系数为\(\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)}\),因此最后题目要求的式子久变成了下式:
&\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)}\int_0^{\infty}\frac{1}{a_i^2+x^2}dx&\\
=&\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i^2}\int_0^{\infty}\frac{1}{1+(\frac{x}{a_i})^2}dx&\\
=&\sum\limits_{i=1}^{n}\frac{1}{\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i}\int_0^{\infty}\frac{1}{1+(\frac{x}{a_i})^2}d\frac{x}{a_i}&
\end{aligned}
\]
积分符号里面的东西就是题目给的式子得到\(\frac{\pi}{2}\),因此最后答案为
&\sum\limits_{i=1}^{n}\frac{1}{2\times\prod\limits_{j=1,j\not=i}^{n}(a_j^2-a_i^2)\times a_i}
\end{aligned}
\]
代码实现如下
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <cassert>
#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;
typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define lson rt<<1
#define rson rt<<1|1
#define lowbit(x) x&(-x)
#define name2str(name) (#name)
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
#define FIN freopen("D://Code//in.txt","r",stdin)
#define IO ios::sync_with_stdio(false),cin.tie(0)
const double eps = 1e-8;
const int mod = 1e9 + 7;
const int maxn = 1e5 + 7;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3fLL;
int n;
int a[maxn], inv[maxn], cnt[maxn];
LL qpow(LL x, int n) {
LL res = 1;
while(n) {
if(n & 1) res = res * x % mod;
x = x * x % mod;
n >>= 1;
}
return res;
}
int main() {
int tmp = qpow(2, mod - 2);
while(~scanf("%d", &n)) {
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
}
for(int i = 1; i <= n; ++i) {
cnt[i] = 1;
for(int j = 1; j <= n; ++j) {
if(i == j) continue;
cnt[i] = 1LL * cnt[i] * ((1LL * a[j] * a[j] % mod - 1LL * a[i]* a[i] % mod) % mod + mod) % mod;
}
cnt[i] = qpow(cnt[i], mod - 2);
cnt[i] = 1LL * cnt[i] * qpow(a[i], mod - 2) % mod;
cnt[i] = 1LL * cnt[i] * tmp % mod;
}
LL ans = 0;
for(int i = 1; i <= n; ++i) {
ans = ((ans + cnt[i]) % mod + mod) % mod;
}
printf("%lld\n", ans);
}
return 0;
}
2019年牛客多校第一场 B题 Integration 数学的更多相关文章
- 2019年牛客多校第一场B题Integration 数学
2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...
- 2019年牛客多校第一场 I题Points Division 线段树+DP
题目链接 传送门 题意 给你\(n\)个点,每个点的坐标为\((x_i,y_i)\),有两个权值\(a_i,b_i\). 现在要你将它分成\(\mathbb{A},\mathbb{B}\)两部分,使得 ...
- 2019年牛客多校第一场 H题XOR 线性基
题目链接 传送门 题意 求\(n\)个数中子集内所有数异或为\(0\)的子集大小之和. 思路 对于子集大小我们不好维护,因此我们可以转换思路变成求每个数的贡献. 首先我们将所有数的线性基的基底\(b\ ...
- 2019年牛客多校第一场 C题Euclidean Distance 暴力+数学
题目链接 传送门 题意 给你\(n\)个数\(a_i\),要你在满足下面条件下使得\(\sum\limits_{i=1}^{n}(a_i-p_i)^2\)最小(题目给的\(m\)只是为了将\(a_i\ ...
- 2019年牛客多校第一场 E题 ABBA DP
题目链接 传送门 思路 首先我们知道\('A'\)在放了\(n\)个位置里面是没有约束的,\('B'\)在放了\(m\)个位置里面也是没有约束的,其他情况见下面情况讨论. \(dp[i][j]\)表示 ...
- Cutting Bamboos(2019年牛客多校第九场H题+二分+主席树)
题目链接 传送门 题意 有\(n\)棵竹子,然后有\(q\)次操作,每次操作给你\(l,r,x,y\),表示对\([l,r]\)区间的竹子砍\(y\)次,每次砍伐的长度和相等(自己定砍伐的高度\(le ...
- 2019年牛客多校第二场 F题Partition problem 爆搜
题目链接 传送门 题意 总共有\(2n\)个人,任意两个人之间会有一个竞争值\(w_{ij}\),现在要你将其平分成两堆,使得\(\sum\limits_{i=1,i\in\mathbb{A}}^{n ...
- MAZE(2019年牛客多校第二场E题+线段树+矩阵乘法)
题目链接 传送门 题意 在一张\(n\times m\)的矩阵里面,你每次可以往左右和下三个方向移动(不能回到上一次所在的格子),\(1\)表示这个位置是墙,\(0\)为空地. 现在有\(q\)次操作 ...
- Kth Minimum Clique(2019年牛客多校第二场D题+k小团+bitset)
目录 题目链接 题意 思路 代码 题目链接 传送门 题意 找第\(k\)小团. 思路 用\(bitset\)来标记每个结点与哪些结点直接有边,然后进行\(bfs\),在判断新加入的点与现在有的点是否都 ...
随机推荐
- 【Android Studio】Frameworks detected: Android framework is detected in the project Configure
刚开始在 Mac 上用 Android Studio, 打开第一个项目就遇到了问题,描述如下: 上午9:: Frameworks detected: Android framework is dete ...
- 【iOS】iOS viewDidLoad 方法名问题
这两天在调试一个项目,跳转到一个页面的时候总是不显示标题栏(当然也没有标题栏的返回按钮),搞了好久,今天总算找到了问题:之前的开发人员竟然把 viewDidLoad 这个基本的方法名写成了 views ...
- 重入锁的学习 (ReentrantLock)
重入锁 :(ReentrantLock) 上锁 用reentrantLock.lock 方法 解锁 用reentrantLock.unlock 方法 上锁和解锁 必须配对 可以多重上锁 Reentr ...
- 用lilypond实现模进
基本练习通常是一个两个简单动作在不同位置上反复操练,所以打谱的时候用模进必不可少. 所谓模进,就是把一个片段平行地转移到其他音高上进行.比如 do re mi fa 可以把从do开始改成从so开始,那 ...
- 【Java例题】7.4 文件题1-学生成绩排序
4.学生成绩排序.已有一个学生成绩文件,含有多位学生的成绩:读取这个文件中的每位学生的成绩,然后排序:最后将这些排好序的成绩写到另一个文件中. package chapter7; import jav ...
- QT状态机
首先吐槽下网上各种博主不清不楚的讲解 特别容易让新手迷惑 总体思想是这样的:首先要有一个状态机对象, 顾名思义,这玩意就是用来容纳状态的.然后调用状态机的start()函数它就会更具你的逻辑去执行相关 ...
- [NUnit]No results
Results (nunit3) saved as TestResult.xmlCommitting...No results, this could be for a number of reaso ...
- iView 实现可编辑表格
create at: 2019-02-20 组件 <i-table highlight-row ref="currentRowTable" :columns="co ...
- JavaWeb——Servlet开发1
Java Servlet是运行在服务器端上的程序,Servlet是Java Servlet包中的一个接口,能够直接处理和相应客户端的请求,也可以将工作委托给应用的其他类. public interfa ...
- HDU 4635 (完全图 和 有向图缩点)
题目链接:HDU 4635 题目大意: 给你一个有向图,加有向边,使得这个图是简单有向图.问你最多加多少条有向边. 简单有向图: 1.不存在有向重边. 2.不存在图循环.(注意是不存在 “图” 循环 ...