poj 1286 polya定理
Necklace of Beads
Description
Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n < 24 ). If the repetitions that are produced by rotation around the center of the circular necklace or reflection to the axis of symmetry are all neglected, how many different forms of the necklace are there?
Input
The input has several lines, and each line contains the input data n.
-1 denotes the end of the input file.
Output
The output should contain the output data: Number of different forms, in each line correspondent to the input data.
Sample Input
4
5
-1
Sample Output
21
39
Solution
polya定理模板题
设\(\overline{G}\)是n个对象的一个置换群, 用m种颜色染图这n个对象,则不同的染色方案数为:
\[L=\frac{1}{|\overline{G}|}[m^{c(\overline{p_1)}}+m^{c(\overline{p_2)}}+...+m^{c(\overline{p_g)}}]
\]其中 \(\overline{G}=\{\overline{p_1},\overline{p_2},...,\overline{p_g}\}\), \(c(\overline{p_k})\)为 \(\overline{p_k}\) 的循环节数(阶)
如对于n=4:
单位元:仅有(1)(2)(3)(4)一种情况,\((1)^4*1\)
考虑旋转\(\pm90^\circ\),有\((1234)^1\),\((1432)^1\)两种情况,\((4)^1*2\)
考虑旋转\(180^\circ\),有(13)(24)一种情况,\((2)^2*1\)
考虑以两个对立顶点为轴翻转,有(1)(3)(24),(2)(4)(13)两种情况,\((1)^2(2)^1*2\)
考虑以一不经过任一顶点但平分多边形的直径翻转,有(12)(34),(13)(24)两种情况,\((2)^2*2\)
所以答案为$$\frac{34+312+32+332+3^2*2}{1+2+1+2+2}=21$$
考虑旋转,对于\(n\)个球的环旋转\(i\)个球的循环节的个数为\(gcd(n,i)\),这一部分快速幂求和
考虑奇数的翻转,每次选择一个顶点作对称轴翻转,循环节数为\(\frac{n+1}{2}\)(自身不动,剩余两两交换),一共n种选择
考虑偶数的翻转,可选对顶的两顶点作为对称轴旋转,循环节数为\(\frac{n+2}{2}\),(两顶点不动,剩余两两交换),\(\frac{n}{2}种选择\),选择无顶点的对称轴翻转,循环节数为\(\frac{n}{2}\)(全部两两交换),\(\frac{n}{2}\)种选择
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <stack>
#if __cplusplus >= 201103L
#include <unordered_map>
#include <unordered_set>
#endif
#include <vector>
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define LONG_LONG_MAX 9223372036854775807LL
#define ll LL
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int, int> P;
int n, m, k;
const int maxn = 1e5 + 10;
ll qpow(ll a, ll n)
{
ll res = 1;
while (n)
{
if (n & 1)
res *= a;
a *= a;
n >>= 1;
}
return res;
}
ll gcd(ll a, ll b) { return !b ? a : gcd(b, a % b); }
ll solve()
{
ll res = 0;
if (!n)
return res;
for (int i = 1; i <= n; i++)
{
res += qpow(3, gcd(n, i));
}
if (n & 1)
{
res += (ll)n * qpow(3, (n + 1) / 2);
}
else
{
res += (ll)(n / 2) * qpow(3, (n + 2) / 2);
res += (ll)(n / 2) * qpow(3, n / 2);
}
return res / (2 * n);
}
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
while (cin >> n && n != -1)
{
cout << solve() << '\n';
}
return 0;
}
poj 1286 polya定理的更多相关文章
- POJ 1286 Pólya定理
Necklace of Beads Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9162 Accepted: 3786 ...
- poj 2409(polya定理模板)
题意:给你n种颜色和m个小球,问你有多少种不同的方案! 分析:作为模板.. 代码实现: #include <iostream> #include <cstdio> #inclu ...
- poj 1286 Necklace of Beads & poj 2409 Let it Bead(初涉polya定理)
http://poj.org/problem?id=1286 题意:有红.绿.蓝三种颜色的n个珠子.要把它们构成一个项链,问有多少种不同的方法.旋转和翻转后同样的属于同一种方法. polya计数. 搜 ...
- POJ 1286 Necklace of Beads(Polya定理)
点我看题目 题意 :给你3个颜色的n个珠子,能组成多少不同形式的项链. 思路 :这个题分类就是polya定理,这个定理看起来真的是很麻烦啊T_T.......看了有个人写的不错: Polya定理: ( ...
- POJ 2409 Let it Bead(Polya定理)
点我看题目 题意 :给你c种颜色的n个珠子,问你可以组成多少种形式. 思路 :polya定理的应用,与1286差不多一样,代码一改就可以交....POJ 1286题解 #include <std ...
- POJ 2409 Let it Bead:置换群 Polya定理
题目链接:http://poj.org/problem?id=2409 题意: 有一串n个珠子穿起来的项链,你有k种颜色来给每一个珠子染色. 问你染色后有多少种不同的项链. 注:“不同”的概念是指无论 ...
- POJ 1286 【POLYA】
题意: 给你三种颜色的珠子,每次给你N,问在旋转,翻转之后视作相同的情况下,能组成多少种不同的项链. 思路: 让我们借这道题拯救一下我对POLYA定理的理解... sigma(m^(gcd(i,n)) ...
- poj 1286 Necklace of Beads (polya(旋转+翻转)+模板)
Description Beads of red, blue or green colors are connected together into a circular necklace of ...
- POJ 2409 Let it Bead (Polya定理)
题意 用k种颜色对n个珠子构成的环上色,旋转翻转后相同的只算一种,求不等价的着色方案数. 思路 Polya定理 X是对象集合{1, 2, --, n}, 设G是X上的置换群,用M种颜色染N种对象,则不 ...
随机推荐
- 如何用ModelSim对Xilinx ISE产生的网表进行仿真
图: 在对设计的芯片进行测试时,经常要用到FPGA,可是里面的仿真工具却不如Modelsim那么好用,且在规模比较大时,ISE在仿真时,软件经常会报告内存限制的问题,此时一般会切换到Modelsim软 ...
- 接口文档注解:@ApiOperation
@ApiOperation不是spring自带的注解是swagger里的 com.wordnik.swagger.annotations.ApiOperation; @ApiOperation和@Ap ...
- win10win7office系列激活工具 KMSAuto Net 2016 v1.5.4 绿色便携版
下载地址:点我 KMSpico又称KMS激活工具,KMSpico是目前成功且经常更新的Windows激活工具,可以激活任何版本的window系统和任何版本的Office软件,即使是win8和offic ...
- CI工具Jenkins的安装配置【linux】——jenkins集成sonarqube-异常解决
Setup 官网https://jenkins.io/ 下载war包,扔到tomcat下启动即可. 如果有port限制,在iptables中打开商品限制. 访问http://ip:port/jenki ...
- Java编程思想:NIO知识点
import java.io.*; import java.nio.*; import java.nio.channels.FileChannel; import java.nio.charset.C ...
- linux svn 中文 https://my.oschina.net/VASKS/blog/659236
https://my.oschina.net/VASKS/blog/659236 设置服务器: export LC_ALL=zh_CN.UTF-8长久之计, echo export LC_ALL=zh ...
- 【LightOJ - 1370】Bi-shoe and Phi-shoe
Bi-shoe and Phi-shoe Descriptions: 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. Input 输入以整数T(≤100)开始 ...
- 【原】深度学习的一些经验总结和建议 | To do v.s Not To Do
前言:本文同步发布于公众号:Charlotte数据挖掘,欢迎关注,获得最新干货- 昨天看到几篇不同的文章写关于机器学习的to do & not to do,有些观点赞同,有些不赞同,是现在算法 ...
- python基础之list列表的增删改查以及循环、嵌套
Python的列表在JS中又叫做数组,是基础数据类型之一,以[]括起来,以逗号隔开,可以存放各种数据类型.嵌套的列表.对象.列表是有序的,即有索引值,可切片,方便取值.列表的操作和对字符串的操作是一样 ...
- 分析了京东内衣销售记录,告诉你妹子们的真Size!
>今天闲暇之余写了一个爬虫例子.通过爬虫去爬取京东的用户评价,通过分析爬取的数据能得到很多结果,比如,哪一种颜色的胸罩最受女性欢迎,以及中国女性的平均size(仅供参考哦~) 打开开发者工具-n ...